|   | 
Details
   web
Records
Author Persson, T.
Title Determining the variability in optimal sowing date of spring cereals in South Eastern Norway Type
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 5 Issue Pages Sp5-45
Keywords
Abstract (down) Spring cereals are important agricultural crops in Northern Europe. The short growing season in this region necessitates early sowing. The earliest possible date is often determined by the soil water content, which usually decreases during and after snowmelt at rates varying with the weather and the soil characteristics. Tillage and sowing operations on soils with too high a water content can lead to soil compaction, increased soil erosion, and losses of nutrients and soil organic matter. Rainfall intensity also affects crop emergence, through its potentially negative effects on surface capping. The objective of this study was to determine the earliest possible sowing date of spring cereals for representative soil and climate scenarios in southeastern Norway. Criteria were set for pre-sowing tillage operations and sowing, based on the water content in differ soil layers and the incidence of rainfall. To determine the day of the year when these criteria were first met, the soil water content during the spring was simulated with the soil module in DSSAT v4.5. These simulations were performed for contrasting soil types and climate scenarios representing the period 1961-90 and 2046-65 respectively. For each combination of soil and climate, one hundred simulations with individual weather data were performed. The results provide information about the timing and variability of the optimal planting date for the current and projected climate in South Eastern Norway. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK
Notes Approved no
Call Number MA @ admin @ Serial 2160
Permanent link to this record
 

 
Author Persson, T.; Kværnø, S.; Höglind, M.
Title Determining the impact of soil regionalization and climate change on wheat and timothy grass yield in southeastern Norway Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (down) Southeastern Norway is characterized by variable soils, which affect its agricultural productivity. The region is dominated by cereal production, but livestock farming with forage crops has increased the latest years. Climate and socio-economic changes could entail a shift from the current production areas of cereal and forage crops. In this study we used the mechanistic models CSM-CERES and LINGRA to evaluate impacts of climate change and soil variability on wheat and timothy yields in Akerhus and Østfold Counties in Southeastern Norway. The models were run for historical (1961-90) and projected future (2046-2065) climatic conditions, and for four soil regionalizations of different resolution (1, 5, 16 and 76 representative soil profiles). The extrapolation of soil characteristics was based on similarities in texture, organic matter, layering and water holding capacity. Across the whole region, there were small differences in both spring wheat and timothy yield between the different soil regionalization resolutions. However, within certain districts within the region the differences in wheat grain yield and timothy biomass yield among the soil resolutions were up to 20 percent. These results indicate that a relatively detailed resolution of the soil proporties is preferred to better understand the impact of shifts in production between cereals and forage grasses on yield level  if spatial variability within regions is considered. The climate change scenario used indicated increased yields of both crop types in a future climate. Further steps could include a weighting of the wheat and timothy production across soils according to economic analyses.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5072
Permanent link to this record
 

 
Author Brouwer, F.; Sinabell, F.
Title Three years of collaboration in TradeM – Agricultural markets and prices Type Conference Article
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 6 Issue Pages SP6-4
Keywords
Abstract (down) Some farmers may claim that climate change adaptation is easy compared to the difficulties caused by policiesAction based on weather observations only, is insufficient for farmers to respond to climate change. Researchers need support from farmers in understanding the responses in practice.Policies might be too slow to respond to needs for change in agriculture. Winners and losers seem to be observed everywhere.The impacts of climate change is heterogeneous among farm types and regionsEffects beyond 2050 remain largely unclear, mainly because the effects of extreme events are not consideredVariability of yields is important to farm incomes, but most studies only consider average changesFarmers are ready to design their site-specific adaptation response providing that new knowledge and learning spaces are available. A learning process based on integrated models, assessment of short- and long-term effects, is needed for farmers to adapt to climate change, price fluctuations and policy change. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Brussels Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Climate-change impacts on farming systems in the next decades: Why worry when you have CAP? A FACCE MACSUR workshop for policymakers
Notes Approved no
Call Number MA @ admin @ Serial 2343
Permanent link to this record
 

 
Author Hamidov, A.; Helming, K.; Bellocchi, G.; Bojar, W.; Dalgaard, T.; Ghaley, B.B.; Hoffmann, C.; Holman, I.; Holzkämper, A.; Krzeminska, D.; Kværnø, S.H.; Lehtonen, H.; Niedrist, G.; Øygarden, L.; Reidsma, P.; Roggero, P.P.; Rusu, T.; Santos, C.; Seddaiu, G.; Skarbøvik, E.; Ventrella, D.; Żarski, J.; Schönhart, M.
Title Impacts of climate change adaptation options on soil functions: A review of European case-studies Type Journal Article
Year 2018 Publication Land Degradation & Development Abbreviated Journal Land Degradation & Development
Volume 29 Issue 8 Pages 2378-2389
Keywords agricultural adaptation; DPSIR; regional case-studies; soil degradation; Sustainable Development Goals; Agricultural Practices; Ecosystem Services; Land Management; Netherlands; Farm; Environment; Challenges; Catchments; Framework; Nitrogen
Abstract (down) Soils are vital for supporting food security and other ecosystem services. Climate change can affect soil functions both directly and indirectly. Direct effects include temperature, precipitation, and moisture regime changes. Indirect effects include those that are induced by adaptations such as irrigation, crop rotation changes, and tillage practices. Although extensive knowledge is available on the direct effects, an understanding of the indirect effects of agricultural adaptation options is less complete. A review of 20 agricultural adaptation case-studies across Europe was conducted to assess implications to soil threats and soil functions and the link to the Sustainable Development Goals (SDGs). The major findings are as follows: (a) adaptation options reflect local conditions; (b) reduced soil erosion threats and increased soil organic carbon are expected, although compaction may increase in some areas; (c) most adaptation options are anticipated to improve the soil functions of food and biomass production, soil organic carbon storage, and storing, filtering, transforming, and recycling capacities, whereas possible implications for soil biodiversity are largely unknown; and (d) the linkage between soil functions and the SDGs implies improvements to SDG 2 (achieving food security and promoting sustainable agriculture) and SDG 13 (taking action on climate change), whereas the relationship to SDG 15 (using terrestrial ecosystems sustainably) is largely unknown. The conclusion is drawn that agricultural adaptation options, even when focused on increasing yields, have the potential to outweigh the negative direct effects of climate change on soil degradation in many European regions.
Address 2018-10-16
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1085-3278 ISBN Medium
Area Expedition Conference
Notes XC, TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5210
Permanent link to this record
 

 
Author Walkiewicz, A.; Bulak, P.; Brzezinska, M.; Wnuk, E.; Bieganowski, A.
Title Methane oxidation in heavy metal contaminated Mollic Gleysol under oxic and hypoxic conditions Type Journal Article
Year 2016 Publication Environmental Pollution Abbreviated Journal Environ. Pollut.
Volume 213 Issue Pages 403-411
Keywords Soil; Methane oxidation; CH4; Heavy metals; Oxygen status; Dehydrogenase; activity; methanotrophic bacteria; dehydrogenase-activity; potential activity; forest soils; responses; landfill; community; ch4; co2; bioremediation
Abstract (down) Soils are the largest terrestrial sink for methane (CH4). However, heavy metals may exert toxicity to soil microorganisms, including methanotrophic bacteria. We tested the effect of lead (Pb), zinc (Zn) and nickel (Ni) on CH4 oxidation (1% v/v) and dehydrogenase activity, an index of the activity of the total soil microbial community in Mollic Gleysol soil in oxic and hypoxic conditions (oxia and hypoxia, 20% and 10% v/v O2, respectively). Metals were added in doses corresponding to the amounts permitted of Pb, Zn, Ni in agricultural soils (60, 120, 35 mg kg(-1), respectively), and half and double of these doses. Relatively low metal contents and O2 status reflect the conditions of most agricultural soils of temperate regions. Methane consumption showed high tolerance to heavy metals. The effect of O2 status was stronger than that of metals. CH4 consumption was enhanced under hypoxia, where both the start and the completion of the control and contaminated treatment were faster than under oxic conditions. Dehydrogenase activity, showed higher sensitivity to the contamination (except for low Ni dose), with a stronger effect of heavy metals, than that of the O2 status.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Newsletter July 2016 Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0269-7491 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4771
Permanent link to this record