toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ghaley, B.B.; Sandhu, H.S.; Porter, J.R. doi  openurl
  Title Relationship between C:N/C:O stoichiometry and ecosystem services in managed production systems Type Journal Article
  Year 2015 Publication PLoS One Abbreviated Journal PLoS One  
  Volume 10 Issue 4 Pages e0123869  
  Keywords Carbon/*metabolism; *Conservation of Natural Resources/economics; Denmark; *Ecosystem; Fagus/metabolism; Forests; Nitrogen/*metabolism; Oxygen/*metabolism; Soil  
  Abstract (up) Land use and management intensity can influence provision of ecosystem services (ES). We argue that forest/agroforestry production systems are characterized by relatively higher C:O/C:N and ES value compared to arable production systems. Field investigations on C:N/C:O and 15 ES were determined in three diverse production systems: wheat monoculture (Cwheat), a combined food and energy system (CFE) and a beech forest in Denmark. The C:N/C:O ratios were 194.1/1.68, 94.1/1.57 and 59.5/1.45 for beech forest, CFE and Cwheat, respectively. The economic value of the non-marketed ES was also highest in beech forest (US$ 1089 ha(-1) yr(-1)) followed by CFE (US$ 800 ha(-1) yr(-1)) and Cwheat (US$ 339 ha(-1) yr(-1)). The combined economic value was highest in the CFE (US$ 3143 ha(-1) yr(-1)) as compared to the Cwheat (US$ 2767 ha(-1) yr(-1)) and beech forest (US$ 2365 ha(-1) yr(-1)). We argue that C:N/C:O can be used as a proxy of ES, particularly for the non-marketed ES, such as regulating, supporting and cultural services. These ES play a vital role in the sustainable production of food and energy. Therefore, they should be considered in decision making and developing appropriate policy responses for land use management.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4692  
Permanent link to this record
 

 
Author Weindl, I.; Popp, A.; Bodirsky, B.L.; Rolinski, S.; Lotze-Campen, H.; Biewald, A.; Humpenoeder, F.; Dietrich, J.P.; Stevanovic, M. doi  openurl
  Title Livestock and human use of land: Productivity trends and dietary choices as drivers of future land and carbon dynamics Type Journal Article
  Year 2017 Publication Global and Planetary Change Abbreviated Journal Global And Planetary Change  
  Volume 159 Issue Pages 1-10  
  Keywords Livestock productivity; Diets; Land use; Deforestation; Carbon emissions; Greenhouse gas mitigation; Greenhouse-Gas Emissions; Climate-Change Mitigation; Food-Demand; Crop; Productivity; Cover Change; Systems; Agriculture; Intensification; Environment; Deforestation  
  Abstract (up) Land use change has been the primary driving force of human alteration of terrestrial ecosystems. With 80% of agricultural land dedicated to livestock production, the sector is an important lever to attenuate land requirements for food production and carbon emissions from land use change. In this study, we quantify impacts of changing human diets and livestock productivity on land dynamics and depletion of carbon stored in vegetation, litter and soils. Across all investigated productivity pathways, lower consumption of livestock products can substantially reduce deforestation (47-55%) and cumulative carbon losses (34-57%). On the supply side, already minor productivity growth in extensive livestock production systems leads to substantial CO2 emission abatement, but the emission saving potential of productivity gains in intensive systems is limited, also involving trade-offs with soil carbon stocks. If accounting for uncertainties related to future trade restrictions, crop yields and pasture productivity, the range of projected carbon savings from changing diets increases to 23-78%. Highest abatement of carbon emissions (63-78%) can be achieved if reduced consumption of animal-based products is combined with sustained investments into productivity increases in plant production. Our analysis emphasizes the importance to integrate demand- and supply-side oriented mitigation strategies and to combine efforts in the crop and livestock sector to enable synergies for climate protection.  
  Address 2018-01-25  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-8181 ISBN Medium  
  Area Expedition Conference  
  Notes LiveM, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5188  
Permanent link to this record
 

 
Author Popp, A.; Humpenöder, F.; Weindl, I.; Bodirsky, B.L.; Bonsch, M.; Lotze-Campen, H.; Müller, C.; Biewald, A.; Rolinski, S.; Stevanovic, M.; Dietrich, J.P. url  doi
openurl 
  Title Land-use protection for climate change mitigation Type Journal Article
  Year 2014 Publication Nature Climate Change Abbreviated Journal Nat. Clim. Change  
  Volume 4 Issue 12 Pages 1095-1098  
  Keywords avoided deforestation; forest conservation; carbon emissions; co2 emissions; productivity; scarcity; stocks; redd  
  Abstract (up) Land-use change, mainly the conversion of tropical forests to agricultural land, is a massive source of carbon emissions and contributes substantially to global warming(1-3). Therefore, mechanisms that aim to reduce carbon emissions from deforestation are widely discussed, A central challenge is the avoidance of international carbon leakage if forest conservation is not implemented globally’’, Here, We show that forest conservation schemes, even if implemented globally, could lead to another type of carbon leakage by driving cropland expansion in non-forested areas that are not subject to forest conservation schemes (non-forest leakage). These areas have a smaller. but still considerable potential to store carbon(5,6). We show that a global forest policy could reduce carbon emissions by 77 Gt CO2, but would still allow for decreases in carbon stocks of non-forest land by 96 Gt CO2, until 2100 due to non-forest leakage effects. Furthermore; abandonment of agricultural hand and associated carbon uptake through vegetation regrowth is hampered. Effective mitigation measures thus require financing structures and conservation investments that cover the full range of carbon-rich ecosystems. However, our analysis indicates that greater agricultural productivity increases would be needed to compensate for such restrictions on agricultural expansion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1758-678x 1758-6798 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, LiveM, TradeM Approved no  
  Call Number MA @ admin @ Serial 4540  
Permanent link to this record
 

 
Author Weindl, I.; Lotze-Campen, H.; Popp, A.; Müller, C.; Havlík, P.; Herrero, M.; Schmitz, C.; Rolinski, S. url  doi
openurl 
  Title Livestock in a changing climate: production system transitions as an adaptation strategy for agriculture Type Journal Article
  Year 2015 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.  
  Volume 10 Issue 9 Pages 094021  
  Keywords livestock; climate impacts; land use modeling; adaptation costs; production systems; greenhouse-gas emissions; global change; management implications; developing-countries; crop productivity; change mitigation; food security; model; impacts; carbon  
  Abstract (up) Livestock farming is the world’s largest land use sector and utilizes around 60% of the global biomass harvest. Over the coming decades, climate change will affect the natural resource base of livestock production, especially the productivity of rangeland and feed crops. Based on a comprehensive impact modeling chain, we assess implications of different climate projections for agricultural production costs and land use change and explore the effectiveness of livestock system transitions as an adaptation strategy. Simulated climate impacts on crop yields and rangeland productivity generate adaptation costs amounting to 3% of total agricultural production costs in 2045 (i.e. 145 billion US$). Shifts in livestock production towards mixed crop-livestock systems represent a resource-and cost-efficient adaptation option, reducing agricultural adaptation costs to 0.3% of total production costs and simultaneously abating deforestation by about 76 million ha globally. The relatively positive climate impacts on grass yields compared with crop yields favor grazing systems inter alia in South Asia and North America. Incomplete transitions in production systems already have a strong adaptive and cost reducing effect: a 50% shift to mixed systems lowers agricultural adaptation costs to 0.8%. General responses of production costs to system transitions are robust across different global climate and crop models as well as regarding assumptions on CO2 fertilization, but simulated values show a large variation. In the face of these uncertainties, public policy support for transforming livestock production systems provides an important lever to improve agricultural resource management and lower adaptation costs, possibly even contributing to emission reduction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-9326 ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4718  
Permanent link to this record
 

 
Author Dass, P.; Müller, C.; Brovkin, V.; Cramer, W. url  doi
openurl 
  Title Can bioenergy cropping compensate high carbon emissions from large-scale deforestation of high latitudes Type Journal Article
  Year 2013 Publication Earth System Dynamics Abbreviated Journal Earth System Dynamics  
  Volume 4 Issue 2 Pages 409-424  
  Keywords land-use change; global vegetation model; soil carbon; climate-change; surface albedo; cover changes; snow cover; remind-r; forest; productivity  
  Abstract (up) Numerous studies have concluded that deforestation of the high latitudes result in a global cooling. This is mainly because of the increased albedo of deforested land which dominates over other biogeophysical and biogeochemical mechanisms in the energy balance. This dominance, however, may be due to an underestimation of the biogeochemical response, as carbon emissions are typically at or below the lower end of estimates. Here, we use the dynamic global vegetation model LPJmL for a better estimate of the carbon cycle under such large-scale deforestation. These studies are purely theoretical in order to understand the role of vegetation in the energy balance and the earth system. They must not be mistaken as possible mitigation options, because of the devastating effects on pristine ecosystems. For realistic assumptions of land suitability, the total emissions computed in this study are higher than that of previous studies assessing the effects of boreal deforestation. The warming due to biogeochemical effects ranges from 0.12 to 0.32 degrees C, depending on the climate sensitivity. Using LPJmL to assess the mitigation potential of bioenergy plantations in the suitable areas of the deforested region, we find that the global biophysical bioenergy potential is 68.1 +/- 5.6 EJ yr(-1) of primary energy at the end of the 21st century in the most plausible scenario. The avoided combustion of fossil fuels over the time frame of this experiment would lead to further cooling. However, since the carbon debt caused by the cumulative emissions is not repaid by the end of the 21st century, the global temperatures would increase by 0.04 to 0.11 degrees C. The carbon dynamics in the high latitudes especially with respect to permafrost dynamics and long-term carbon losses, require additional attention in the role for the Earth’s carbon and energy budget.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-4987 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4486  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: