toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fronzek, S.; Pirttioja, N.; Carter, T.R.; Bindi, M.; Hoffmann, H.; Palosuo, T.; Ruiz-Ramos, M.; Tao, F.; Trnka, M.; Acutis, M.; Asseng, S.; Baranowski, P.; Basso, B.; Bodin, P.; Buis, S.; Cammarano, D.; Deligios, P.; Destain, M.-F.; Dumont, B.; Ewert, F.; Ferrise, R.; Francois, L.; Gaiser, T.; Hlavinka, P.; Jacquemin, I.; Kersebaum, K.C.; Kollas, C.; Krzyszczaki, J.; Lorite, I.J.; Minet, J.; Ines Minguez, M.; Montesino, M.; Moriondo, M.; Mueller, C.; Nendel, C.; Ozturk, I.; Perego, A.; Rodriguez, A.; Ruane, A.C.; Ruget, F.; Sanna, M.; Semenov, M.A.; Slawinski, C.; Stratonovitch, P.; Supit, I.; Waha, K.; Wang, E.; Wu, L.; Zhao, Z.; Rotter, R.P. doi  openurl
  Title Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change Type Journal Article
  Year 2018 Publication Agricultural Systems Abbreviated Journal Agric. Syst.  
  Volume 159 Issue Pages 209-224  
  Keywords Classification; Climate change; Crop model; Ensemble; Sensitivity analysis; Wheat; Climate-Change; Crop Models; Probabilistic Assessment; Simulating; Impacts; British Catchments; Uncertainty; Europe; Productivity; Calibration; Adaptation  
  Abstract (down) Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in temperature (-2 to +9 degrees C) and precipitation (-50 to +50%). Model results were analysed by plotting them as impact response surfaces (IRSs), classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that may explain the major differences in model responses. The model ensemble was used to simulate yields of winter and spring wheat at four sites in Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two approaches describing their pattern. The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield (nine classes) and strength of the yield response with respect to climate (four classes), resulting in a total of 36 combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether different patterns of yield response could be related to different properties of the crop models, specifically their genealogy, calibration and process description. Although no single model property across a large model ensemble was found to explain the integrated yield response to temperature and precipitation perturbations, the application of the EDA and SDA approaches revealed their capability to distinguish: (i) stronger yield responses to precipitation for winter wheat than spring wheat; (ii) differing strengths of response to climate changes for years with anomalous weather conditions compared to period-average conditions; (iii) the influence of site conditions on yield patterns; (iv) similarities in IRS patterns among models with related genealogy; (v) similarities in IRS patterns for models with simpler process descriptions of root growth and water uptake compared to those with more complex descriptions; and (vi) a closer correspondence of IRS patterns in models using partitioning schemes to represent yield formation than in those using a harvest index. Such results can inform future crop modelling studies that seek to exploit the diversity of multi-model ensembles, by distinguishing ensemble members that span a wide range of responses as well as those that display implausible behaviour or strong mutual similarities.  
  Address 2018-01-25  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-521x ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5186  
Permanent link to this record
 

 
Author Tao, F.; Roetter, R.P.; Palosuo, T.; Hernandez Diaz-Ambrona, C.G.; Ines Minguez, M.; Semenov, M.A.; Kersebaum, K.C.; Nendel, C.; Specka, X.; Hoffmann, H.; Ewert, F.; Dambreville, A.; Martre, P.; Rodriguez, L.; Ruiz-Ramos, M.; Gaiser, T.; Hohn, J.G.; Salo, T.; Ferrise, R.; Bindi, M.; Cammarano, D.; Schulman, A.H. doi  openurl
  Title Contribution of crop model structure, parameters and climate projections to uncertainty in climate change impact assessments Type Journal Article
  Year 2018 Publication Global Change Biology Abbreviated Journal Glob. Chang. Biol.  
  Volume 24 Issue 3 Pages 1291-1307  
  Keywords barley; climate change; Europe; impact; super-ensemble; uncertainty; Nitrogen Dynamics; Multimodel Ensembles; Simulation-Models; Change; Scenarios; Yield; Rice; Weather; Growth; Wheat; Maize  
  Abstract (down) Climate change impact assessments are plagued with uncertainties from many sources, such as climate projections or the inadequacies in structure and parameters of the impact model. Previous studies tried to account for the uncertainty from one or two of these. Here, we developed a triple-ensemble probabilistic assessment using seven crop models, multiple sets of model parameters and eight contrasting climate projections together to comprehensively account for uncertainties from these three important sources. We demonstrated the approach in assessing climate change impact on barley growth and yield at Jokioinen, Finland in the Boreal climatic zone and Lleida, Spain in the Mediterranean climatic zone, for the 2050s. We further quantified and compared the contribution of crop model structure, crop model parameters and climate projections to the total variance of ensemble output using Analysis of Variance (ANOVA). Based on the triple-ensemble probabilistic assessment, the median of simulated yield change was -4% and +16%, and the probability of decreasing yield was 63% and 31% in the 2050s, at Jokioinen and Lleida, respectively, relative to 1981-2010. The contribution of crop model structure to the total variance of ensemble output was larger than that from downscaled climate projections and model parameters. The relative contribution of crop model parameters and downscaled climate projections to the total variance of ensemble output varied greatly among the seven crop models and between the two sites. The contribution of downscaled climate projections was on average larger than that of crop model parameters. This information on the uncertainty from different sources can be quite useful for model users to decide where to put the most effort when preparing or choosing models or parameters for impact analyses. We concluded that the triple-ensemble probabilistic approach that accounts for the uncertainties from multiple important sources provide more comprehensive information for quantifying uncertainties in climate change impact assessments as compared to the conventional approaches that are deterministic or only account for the uncertainties from one or two of the uncertainty sources.  
  Address 2018-03-08  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5194  
Permanent link to this record
 

 
Author Ruiz-Ramos, M.; Rodriguez, A.; Dosio, A.; Goodess, C.M.; Harpham, C.; Minguez, M.I.; Sanchez, E. url  doi
openurl 
  Title Comparing correction methods of RCM outputs for improving crop impact projections in the Iberian Peninsula for 21st century Type Journal Article
  Year 2016 Publication Climatic Change Abbreviated Journal Clim. Change  
  Volume 134 Issue 1-2 Pages 283-297  
  Keywords regional climate model; bias correction; weather generator; circulation model; simulations; temperature; precipitation; ensemble; uncertainty; extremes  
  Abstract (down) Assessment of climate change impacts on crops in regions of complex orography such as the Iberian Peninsula (IP) requires climate model output which is able to describe accurately the observed climate. The high resolution of output provided by Regional Climate Models (RCMs) is expected to be a suitable tool to describe regional and local climatic features, although their simulation results may still present biases. For these reasons, we compared several post-processing methods to correct or reduce the biases of RCM simulations from the ENSEMBLES project for the IP. The bias-corrected datasets were also evaluated in terms of their applicability and consequences in improving the results of a crop model to simulate maize growth and development at two IP locations, using this crop as a reference for summer cropping systems in the region. The use of bias-corrected climate runs improved crop phenology and yield simulation overall and reduced the inter-model variability and thus the uncertainty. The number of observational stations underlying each reference observational dataset used to correct the bias affected the correction performance. Although no single technique showed to be the best one, some methods proved to be more adequate for small initial biases, while others were useful when initial biases were so large as to prevent data application for impact studies. An initial evaluation of the climate data, the bias correction/reduction method and the consequences for impact assessment would be needed to design the most robust, reduced uncertainty ensemble for a specific combination of location, crop, and crop management.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-0009 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4805  
Permanent link to this record
 

 
Author Lehtonen, H. openurl 
  Title Evaluating adaptation and the production development of Finnish agriculture in climate and global change Type Journal Article
  Year 2015 Publication Agricultural and Food Science Abbreviated Journal Agricultural and Food Science  
  Volume 24 Issue 3 Pages 219-234  
  Keywords agricultural sector modelling; economic adjustment; global prices; climate change; finnish agriculture; crop production; land-use; challenge; ensembles; Finland; Europe; policy  
  Abstract (down) Agricultural product prices and policies influence the development of crop yields under climate change through farm level management decisions. On this basis, five main scenarios were specified for agricultural commodity prices and crop yields. An economic agricultural sector model was used in order to assess the impacts of the scenarios on production, land use and farm income in Finland. The results suggest that falling crop yields, if realized due to low prices and restrictive policies, will result in decreasing crop and livestock production and increasing nutrient surplus. Slowly increasing crop yields could stabilise production and increase farm income. Significantly higher crop prices and yields are required, however, for any marked increase in production in Finland. Cereals production would increase relatively more than livestock production, if there were high prices for agricultural products. This is explained by abundant land resources, a high opportunity cost of labour and policies maintaining current dairy and beef production.  
  Address 2016-07-22  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1459-6067 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4750  
Permanent link to this record
 

 
Author Liu, X.; Lehtonen, H.; Purola, T.; Pavlova, Y.; Rötter, R.; Palosuo, T. url  doi
openurl 
  Title Dynamic economic modelling of crop rotations with farm management practices under future pest pressure Type Journal Article
  Year 2016 Publication Agricultural Systems Abbreviated Journal Agricultural Systems  
  Volume 144 Issue Pages 65-76  
  Keywords Farm management; Dynamic optimization; Crop rotation; Risk aversion; Climate change; Prices; climate-change; sequester carbon; changing climate; food security; challenge; Finland; ensembles; systems; europe; tool  
  Abstract (down) Agricultural practice is facing multiple challenges under volatile commodity markets, inevitable climate change, mounting pest pressure and various other environment-related constraints. The objective of this research is to present a dynamic optimization model of crop rotations and farm management and show its suitability for economic analysis over a 30 year time period. In this model, we include management practices such as fertilization, fungicide treatment and liming, and apply it in a region in Southwestern Finland. Results show that (i) growing pest pressure favours the cultivation of wheat-oats and wheat-oilseeds combinations, while (ii) market prices largely determine the crops in the rotation plan and the specific management practices adopted. The flexibility of our model can also be utilized in evaluating the value of other management options such as new cultivars under different projections of future climate and market conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308521x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4719  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: