toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ghaley, B.B.; Porter, J.R.; Sandhu, H.S. url  doi
openurl 
  Title Soil-based ecosystem services: a synthesis of nutrient cycling and carbon sequestration assessment methods Type Journal Article
  Year 2014 Publication International Journal of Biodiversity Science, Ecosystem Services & Management Abbreviated Journal International Journal of Biodiversity Science, Ecosystem Services & Management  
  Volume 10 Issue 3 Pages 177-186  
  Keywords ecosystem functions; litter decomposition; mineralisation; assessment methodologies; stoichiometry  
  Abstract (up) Among the soil-based ecosystem services (ES), nutrient cycling and carbon sequestration have direct influence on the biogeochemical cycles and greenhouse gas emissions affecting provision of other ES that support human existence. We reviewed methods to assess the two key ES by identifying their strengths and weaknesses and have made suggestions for using appropriate methods for better understanding of the ecosystem functions for the provision of ES. Relevant papers for the review were chosen on the basis of (i) diversity of studies on the two key ES in different ecosystems, (ii) methodologies applied and (iii) detailed descriptions of the trial locations in terms of vegetation, soil type, location and climatic information. We concluded that (i) elemental stoichiometrical ratios could be a potential approach to assess the health of ecosystems in terms of provision of the two ES discussed, (ii) stoichiometric imbalances need to be avoided between the supply and the demand of the nutrients to maintain the ES provision in terrestrial ecosystems and (iii) stoichiometric ratios can act as a management tool at a field, farm and at landscape level, to complement other compositional biodiversity and functional diversity approaches to ensure sustainable provision of ES.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2151-3732 2151-3740 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4522  
Permanent link to this record
 

 
Author Schönhart, M.; Mitter, H.; Schmid, E.; Heinrich, G.; Gobiet, A. openurl 
  Title Integrated analysis of climate change impacts and adaptation measures in Austrian agriculture Type Journal Article
  Year 2014 Publication German Journal of Agricultural Economics Abbreviated Journal German Journal of Agricultural Economics  
  Volume 63 Issue 3 Pages 156-176  
  Keywords land use; modelling; climate change impact; adaptation; integrated analysis; epic; pasma; crop production; land-use; management-practices; model projections; central-europe; soil-erosion; water; variability; strategies; region  
  Abstract (up) An integrated modelling framework (IMF) has been developed and applied to analyse climate change impacts and the effectiveness of adaptation measures in Austrian agriculture. The IMF couples the crop rotation model CropRota, the bio-physical process model EPIC and the bottom-up economic land use model PASMA at regional level (NUTS-3) considering agri-environmental indicators. Four contrasting regional climate model (RCM) simulations represent climate change until 2050. The RCM simulations are applied to a baseline and three adaptation and policy scenarios. Climate change increases crop productivity on national average in the IMF. Changes in average gross margins at national level range from 0% to + 5% between the baseline and the three adaptation and policy scenarios. The impacts at NUTS-3 level range from -5% to + 7% between the baseline and the three adaptation and policy scenarios. Adaptation measures such as planting of winter cover crops, reduced tillage and irrigation are effective in reducing yield losses, increasing revenues, or in improving environmental states under climate change. Future research should account for extreme weather events in order to analyse whether average productivity gains at the aggregated level suffice to cover costs from expected higher climate variability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-1121 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4652  
Permanent link to this record
 

 
Author Schönhart, M.; Schauppenlehner, T.; Schmid, E.; Sinabell, F. url  openurl
  Title Regional Pilot Case Study Mostviertel – AT: Preliminary Results Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (up) An integrated modelling framework (IMF) is developed to analyse impacts of climate andpolicy changes on farm welfare and the environment. The IMF is applied on two contrasting grassland (south) and cropland (north) dominated Austrian landscapes. The IMF combines the crop rotation model CropRota, the bio-physical process model EPIC and the bio-economic farm model FAMOS[space] and applies combined climate change and policy scenarios. Changing policies reduce farm gross margins by -36% and -5% in the two landscapes respectively. Climate change increases gross margins and farms can reach pre-reform levels on average. Climate induced intensification such as removing of landscape elements andincreasing fertilization can be moderated by an agri-environmental program (AEP). However, productivity gains from climate change increase the opportunity costs for AEP participation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume 3(S) Sassari, Italy Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5120  
Permanent link to this record
 

 
Author Hidy, D.; Barcza, Z.; Haszpra, L.; Churkina, G.; Pintér, K.; Nagy, Z. url  doi
openurl 
  Title Development of the Biome-BGC model for simulation of managed herbaceous ecosystems Type Journal Article
  Year 2012 Publication Ecological Modelling Abbreviated Journal Ecol. Model.  
  Volume 226 Issue Pages 99-119  
  Keywords biogeochemical model; biome-bgc; grassland; management; soil moisture; bayesian calibration; carbon flux model; regional applications; bayesian calibration; use efficiency; general-model; exchange; balance; climate; grassland; variability  
  Abstract (up) Apart from measurements, numerical models are the most convenient instruments to analyze the carbon and water balance of terrestrial ecosystems and their interactions with changing environmental conditions. The process-based Biome-BGC model is widely used to simulate the storage and flux of water, carbon, and nitrogen within the vegetation, litter, and soil of unmanaged terrestrial ecosystems. Considering herbaceous vegetation related simulations with Biome-BGC, soil moisture and growing season control on ecosystem functioning is inaccurate due to the simple soil hydrology and plant phenology representation within the model. Consequently, Biome-BGC has limited applicability in herbaceous ecosystems because (1) they are usually managed; (2) they are sensitive to soil processes, most of all hydrology; and (3) their carbon balance is closely connected with the growing season length. Our aim was to improve the applicability of Biome-BGC for managed herbaceous ecosystems by implementing several new modules, including management. A new index (heatsum growing season index) was defined to accurately estimate the first and the final days of the growing season. Instead of a simple bucket soil sub-model, a multilayer soil sub-model was implemented, which can handle the processes of runoff, diffusion and percolation. A new module was implemented to simulate the ecophysiological effect of drought stress on plant mortality. Mowing and grazing modules were integrated in order to quantify the functioning of managed ecosystems. After modifications, the Biome-BGC model was calibrated and validated using eddy covariance-based measurement data collected in Hungarian managed grassland ecosystems. Model calibration was performed based on the Bayes theorem. As a result of these developments and calibration, the performance of the model was substantially improved. Comparison with measurement-based estimate showed that the start and the end of the growing season are now predicted with an average accuracy of 5 and 4 days instead of 46 and 85 days as in the original model. Regarding the different sites and modeled fluxes (gross primary production, total ecosystem respiration, evapotranspiration), relative errors were between 18-60% using the original model and 10-18% using the developed model; squares of the correlation coefficients were between 0.02-0.49 using the original model and 0.50-0.81 using the developed model. (c) 2011 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3800 ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM Approved no  
  Call Number MA @ admin @ Serial 4472  
Permanent link to this record
 

 
Author Jägermeyr, J.; Gerten, D.; Schaphoff, S.; Heinke, J.; Lucht, W.; Rockström, J. url  doi
openurl 
  Title Integrated crop water management might sustainably halve the global food gap Type Journal Article
  Year 2016 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.  
  Volume 11 Issue 2 Pages 025002  
  Keywords sustainable intensification; yield gap; water harvesting; conservation agriculture; irrigation efficiency; food security; climate change adaptation; sub-saharan africa; rain-fed agriculture; dry-spell mitigation; supplemental irrigation; climate-change; smallholder irrigation; environmental impacts; developing-countries; semiarid region; south-africa  
  Abstract (up) As planetary boundaries are rapidly being approached, humanity has little room for additional expansion and conventional intensification of agriculture, while a growing world population further spreads the food gap. Ample evidence exists that improved on-farm water management can close water-related yield gaps to a considerable degree, but its global significance remains unclear. In this modeling study we investigate systematically to what extent integrated crop water management might contribute to closing the global food gap, constrained by the assumption that pressure on water resources and land does not increase. Using a process-based bio-/agrosphere model, we simulate the yield-increasing potential of elevated irrigation water productivity (including irrigation expansion with thus saved water) and optimized use of in situ precipitation water (alleviated soil evaporation, enhanced infiltration, water harvesting for supplemental irrigation) under current and projected future climate (from 20 climate models, with and without beneficial CO2 effects). Results show that irrigation efficiency improvements can save substantial amounts of water in many river basins (globally 48% of non-productive water consumption in an ‘ambitious’ scenario), and if rerouted to irrigate neighboring rainfed systems, can boost kcal production significantly (26% global increase). Low-tech solutions for small-scale farmers on water-limited croplands show the potential to increase rainfed yields to a similar extent. In combination, the ambitious yet achievable integrated water management strategies explored in this study could increase global production by 41% and close the water-related yield gap by 62%. Unabated climate change will have adverse effects on crop yields in many regions, but improvements in water management as analyzed here can buffer such effects to a significant degree.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-9326 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, TradeM Approved no  
  Call Number MA @ admin @ Serial 4733  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: