toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ferrise, R.; Moriondo, M.; Pasqui, M.; Primicerio, J.; Toscano, P.; Semenov, M.; Bindi, M. url  openurl
  Title Within-season predictions of durum wheat yield over the Mediterranean Basin Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (up) Crop yield is the result of the interactions between weather in the incoming season and how farmers decide to manage and protect their crops. According to Jones et al. (2000), uncertainties in the weather of the forthcoming season leads farmers to lose some productivity by taking management decisions based on their own experience of the climate or by adopting conservative strategies aimed at reducing the risks. Accordingly, predicting crop yield in advance, in response to different managements, environments and weathers would assist farm-management decisions(Lawless and Semenov, 2005). Following the approach described by Semenov and Doblas-Reyes (2007), this study aimed at assessing the utility of different seasonal forecasting methodologies in predicting durum wheat yield at 10 different sites across the Mediterranean Basin. The crop model, SiriusQuality (Martre et al., 2006), was used to compute wheat yield over a 10-years period. First, the model was run with a set of observed weather data to calculate the reference yield distributions. Then, starting from 1st January, yield predictions were produced at a monthly time-step using seasonal forecasts. The results were compared with the reference yields to assess the efficacy of the forecasting methodologies to estimate within-season yields. The results indicate that  durum wheat phenology and yield can be accurately predicted under Mediterranean conditions well before crop maturity, although some differences between the sites and the forecasting methodologies were revealed. Useful information can be thus provided for helping farmers to reduce negative impacts or take advantage from favorable conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume 3(S) Sassari, Italy Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5142  
Permanent link to this record
 

 
Author Özkan, á¹¢.; Bonesmo, H.; Østerås, O.; Harstad, O.M. url  openurl
  Title Effect of Increased Somatic Cell Count and Replacement Rate on Greenhouse Gas Emissions in Norwegian Dairy Herds Type Report
  Year 2014 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 3 Issue Pages Sp3-1  
  Keywords  
  Abstract (up) Dairy sector contributes around 4% of global greenhouse gas (GHG) emissions, of which 2/3 and 1/3 are attributed to milk and meat production, respectively. The main GHGs released from dairy farms are methane, nitrous oxide and carbon dioxide. The increased trend in emissions has stimulated research evaluating alternative mitigation options. Much of the work to date has focused on animal breeding, dietary factors and rumen manipulation. There have been little studies assessing the impact of secondary factors such as animal health on emissions at farm level. Production losses associated with udder health are significant. Somatic cell count (SCC) is an indicator on udder health. In Norway, around 45, 60 and 70% of cows in a dairy herd at first, second and third lactation are expected to have SCC of 50,000 cells/ml and above. Another indirect factor is replacement rate. Increasing the replacement rate due to health disorders, infertility and reduced milk yield is likely to increase the total farm emissions if the milking heifer replacements are kept in the herd.In this study, the impact of elevated SCC (200,000 cells/ml and above) and replacement rate on farm GHG emissions was evaluated. HolosNor, a farm scale model adapting IPCC methodology was used to estimate net farm GHG emissions. Preliminary results indicate an increasing trend in emissions (per kg milk and meat) as the SCC increases. Results suggest that animal health should be considered as an indirect mitigation strategy; however, further studies are required to enable comparisons of different farming systems. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2218  
Permanent link to this record
 

 
Author Özkan, Ṣ.; Bonesmo, H.; Østerås, O.; Harstad, O.M. url  openurl
  Title Effect of Increased Somatic Cell Count and Replacement Rate on Greenhouse Gas Emissions in Norwegian Dairy Herds Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (up) Dairy sector contributes around 4% of global greenhouse gas (GHG) emissions, of which 2/3 and 1/3 are attributed to milk and meat production, respectively. The main GHGs released from dairy farms are methane, nitrous oxide and carbon dioxide. The increased trend in emissions has stimulated research evaluating alternative mitigation options. Much of the work to date has focused on animal breeding, dietary factors and rumen manipulation. There have been little studies assessing the impact of secondary factors such as animal health on emissions at farm level. Production losses associated with udder health are significant. Somatic cell count (SCC) is an indicator on udder health. In Norway, around 45, 60 and 70% of cows in a dairy herd at first, second and third lactation are expected to have SCC of 50,000 cells/ml and above. Another indirect factor is replacement rate. Increasing the replacement rate due to health disorders, infertility and reduced milk yield is likely to increase the total farm emissions if the milking heifer replacements are kept in the herd. In this study, the impact of elevated SCC (200,000 cells/ml and above) and replacement rate on farm GHG emissions was evaluated. HolosNor, a farm scale model adapting IPCC methodology was used to estimate net farm GHG emissions. Preliminary results indicate an increasing trend in emissions (per kg milk and meat) as the SCC increases. Results suggest that animal health should be considered as an indirect mitigation strategy; however, further studies are required to enable comparisons of different farming systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume 3(S) Sassari, Italy Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5075  
Permanent link to this record
 

 
Author Kersebaum, K.C.; Kollas, C.; Bindi, M.; Palosuo, T.; Wu, L.; Sharif, B.; Öztürk, I.; Trnka, M.; Hlavinka, P.; Nendel, C.; Müller, C.; Waha, K.; Armas-Herrera, C.; Olesen, J.E.; Eitzinger, J.; Roggero, P.P.; Conradt, T.; Martre, P.; Ferrise, R.; Moriondo, M.; Ruiz-Ramos, M.; Ventrella, D.; Rötter, R.P.; Wegehenkel, M.; Eckersten, H.; Lorite Torres, I.J.; Hernandez, C.G.; Launay, M.; De Wit, A.; Hoffmann, H.; Weigel, H.-J.; Manderscheid, R.; Beaudoin, N.; Constantin, J.; Garcia de Cortazar-Atauri, I.; Mary, B.; Ripoche, D.; Ruget, F. url  openurl
  Title Model inter-comparison on crop rotation effects – an intermediate report Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (up) Data of diverse crop rotations from five locations across Europe were distributed to modelers to investigate the capability of models to handle complex crop rotations and management interactions. Crop rotations comprise various main crops (winter/spring wheat, winter/spring barley, rye, oat, maize, sugar beet, oil seed rape and potatoes) plus several catch crops. The experimental setup of the datasets included treatments such as modified soils, crops exchanged within the rotations, irrigation/rainfed, nitrogen fertilization, residue management, tillage and atmospheric CO2 concentration. 19 modeling teams registered to model either the whole rotation or single crops. Models which are capable to run the whole rotation should provide transient as well as single year simulations with a reset of initial conditions. In the first step only initial soil conditions (water and soil mineral N) of the first year and key phenological stages were provided to the modelers. For calibration, crop yields and biomass were provided for selected years but not for all seasons. In total the combination of treatments and seasons results in 301 years of simulation. Results were analyzed to evaluate the effect of transient simulation versus single-year simulation regarding crop yield, biomass, water and nitrogen balance components. Model results will be evaluated crop-specifically to identify crops with highest uncertainty and potential for model improvement. Full data will be provided to modelers for model-improvement and results will provide insights into model capabilities to reproduce treatments and crops. Further, the question of error propagation along the transient simulation of crop rotations will be addressed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume 3(S) Sassari, Italy Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5104  
Permanent link to this record
 

 
Author Audsley, E. url  openurl
  Title CLIMSAVE interactive platform for climate change impacts in Europe Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (up) Describe the CLIMSAVE Integrated Assessment Platform showing the scope of models, inputs and outputs available.  Present the results from applying the IAP for the six scenarios on the regional case study regions.  Describe the new aims of the follow-on IMPRESSIONS project.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume 3(S) Sassari, Italy Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5063  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: