toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Boeckx, T.; Winters, A.L.; Webb, K.J.; Kingston-Smith, A.H. doi  openurl
  Title Polyphenol oxidase in leaves: is there any significance to the chloroplastic localization Type Journal Article
  Year 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.  
  Volume 66 Issue 12 Pages 3571-3579  
  Keywords Catechol Oxidase/*metabolism; Cell Compartmentation; Chloroplasts/*enzymology; Environment; Photosynthesis; Plant Leaves/*enzymology; Abiotic stress; polyphenol oxidase; secondary metabolism.  
  Abstract (up) Polyphenol oxidase (PPO) catalyses the oxidation of monophenols and/or o-diphenols to o-quinones with the concomitant reduction of oxygen to water which results in protein complexing and the formation of brown melanin pigments. The most frequently suggested role for PPO in plants has been in defence against herbivores and pathogens, based on the physical separation of the chloroplast-localized enzyme from the vacuole-localized substrates. The o-quinone-protein complexes, formed as a consequence of cell damage, may reduce the nutritional value of the tissue and thereby reduce predation but can also participate in the formation of structural barriers against invading pathogens. However, since a sufficient level of compartmentation-based regulation could be accomplished if PPO was targeted to the cytosol, the benefit derived by some plant species in having PPO present in the chloroplast lumen remains an intriguing question. So is there more to the chloroplastic location of PPO? An interaction between PPO activity and photosynthesis has been proposed on more than one occasion but, to date, evidence either for or against direct involvement has been equivocal, and the lack of identified chloroplastic substrates remains an issue. Similarly, PPO has been suggested to have both pro- and anti-oxidant functions. Nevertheless, several independent lines of evidence suggest that PPO responds to environmental conditions and could be involved in the response of plants to abiotic stress. This review highlights our current understanding of the in vivo functions of PPO and considers the potential opportunities it presents for exploitation to increase stress tolerance in food crops.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0957 1460-2431 ISBN Medium Review  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4552  
Permanent link to this record
 

 
Author Van Oijen, M.; Höglind, M. doi  openurl
  Title Toward a Bayesian procedure for using process-based models in plant breeding, with application to ideotype design Type Journal Article
  Year 2016 Publication Euphytica Abbreviated Journal Euphytica  
  Volume 207 Issue 3 Pages 627-643  
  Keywords BASGRA; cold tolerance; genotype-environment interaction; plant breeding; process-based modelling; yield stability; grassland productivity; timothy regrowth; climate-change; water-deficit; forest models; late blight; leaf-area; calibration; growth; tolerance  
  Abstract (up) Process-based grassland models (PBMs) simulate growth and development of vegetation over time. The models tend to have a large number of parameters that represent properties of the plants. To simulate different cultivars of the same species, different parameter values are required. Parameter differences may be interpreted as genetic variation for plant traits. Despite this natural connection between PBMs and plant genetics, there are only few examples of successful use of PBMs in plant breeding. Here we present a new procedure by which PBMs can help design ideotypes, i.e. virtual cultivars that optimally combine properties of existing cultivars. Ideotypes constitute selection targets for breeding. The procedure consists of four steps: (1) Bayesian calibration of model parameters using data from cultivar trials, (2) Estimating genetic variation for parameters from the combination of cultivar-specific calibrated parameter distributions, (3) Identifying parameter combinations that meet breeding objectives, (4) Translating model results to practice, i.e. interpreting parameters in terms of practical selection criteria. We show an application of the procedure to timothy (Phleum pratense L.) as grown in different regions of Norway.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0014-2336 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4820  
Permanent link to this record
 

 
Author Waterworth, W.M.; Bray, C.M.; West, C.E. doi  openurl
  Title The importance of safeguarding genome integrity in germination and seed longevity Type Journal Article
  Year 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.  
  Volume 66 Issue 12 Pages 3549-3558  
  Keywords DNA Damage/genetics; DNA Repair/genetics; *Genome, Plant; Germination/*genetics; Plant Physiological Phenomena/*genetics; Seeds/*genetics; Ageing; DNA repair; double-strand break; germination; longevity; recombination; seed vigour; viability  
  Abstract (up) Seeds are important to agriculture and conservation of plant biodiversity. In agriculture, seed germination performance is an important determinant of crop yield, in particular under adverse climatic conditions. Deterioration in seed quality is associated with the accumulation of cellular damage to macromolecules including lipids, protein, and DNA. Mechanisms that mitigate the deleterious cellular damage incurred in the quiescent state and in cycles of desiccation-hydration are crucial for the maintenance of seed viability and germination vigour. In early-imbibing seeds, damage to the embryo genome must be repaired prior to initiation of cell division to minimize growth inhibition and mutation of genetic information. Here we review recent advances that have established molecular links between genome integrity and seed quality. These studies identified that maintenance of genome integrity is particularly important to the seed stage of the plant lifecycle, revealing new insight into the physiological roles of plant DNA repair and recombination mechanisms. The high conservation of DNA repair and recombination factors across plant species underlines their potential as promising targets for the improvement of crop performance and development of molecular markers for prediction of seed vigour.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0957 1460-2431 ISBN Medium Review  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4579  
Permanent link to this record
 

 
Author Coucheney, E.; Buis, S.; Launay, M.; Constantin, J.; Mary, B.; García de Cortázar-Atauri, I.; Ripoche, D.; Beaudoin, N.; Ruget, F.; &rianarisoa, K.S.; Le Bas, C.; Justes, E.; Léonard, J. url  doi
openurl 
  Title Accuracy, robustness and behavior of the STICS soil–crop model for plant, water and nitrogen outputs: Evaluation over a wide range of agro-environmental conditions in France Type Journal Article
  Year 2015 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 64 Issue Pages 177-190  
  Keywords soil-crop model; stics; model performances; plant biomass; soil nitrogen; soil water; remote-sensing data; goodness-of-fit; hydrological model; simulation-models; solar-radiation; regional-scale; climate-change; generic model; data set; validation  
  Abstract (up) Soil-crop models are increasingly used as predictive tools to assess yield and environmental impacts of agriculture in a growing diversity of contexts. They are however seldom evaluated at a given time over a wide domain of use. We tested here the performances of the STICS model (v8.2.2) with its standard set of parameters over a dataset covering 15 crops and a wide range of agropedoclimatic conditions in France. Model results showed a good overall accuracy, with little bias. Relative RMSE was larger for soil nitrate (49%) than for plant biomass (35%) and nitrogen (33%) and smallest for soil water (10%). Trends induced by contrasted environmental conditions and management practices were well reproduced. Finally, limited dependency of model errors on crops or environments indicated a satisfactory robustness. Such performances make STICS a valuable tool for studying the effects of changes in agro-ecosystems over the domain explored. (C) 2014 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8152 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4554  
Permanent link to this record
 

 
Author Van Oosten, M.J.; Sharkhuu, A.; Batelli, G.; Bressan, R.A.; Maggio, A. doi  openurl
  Title The Arabidopsis thaliana mutant air1 implicates SOS3 in the regulation of anthocyanins under salt stress Type Journal Article
  Year 2013 Publication Plant Molecular Biology Abbreviated Journal Plant Mol. Biol.  
  Volume 83 Issue 4-5 Pages 405-415  
  Keywords Anthocyanins/analysis/*metabolism; Arabidopsis/drug effects/*genetics/physiology/radiation effects; Arabidopsis Proteins/*genetics/metabolism; Basic-Leucine Zipper Transcription Factors/*genetics/metabolism; Flavonoids/metabolism; *Gene Expression Regulation, Plant; Light; Mutagenesis, Insertional; Phenotype; Plant Roots/drug effects/genetics/physiology/radiation effects; Plant Shoots/drug effects/genetics/physiology/radiation effects; Real-Time Polymerase Chain Reaction; Sodium Chloride/pharmacology; Stress, Physiological  
  Abstract (up) The accumulation of anthocyanins in plants exposed to salt stress has been largely documented. However, the functional link and regulatory components underlying the biosynthesis of these molecules during exposure to stress are largely unknown. In a screen of second site suppressors of the salt overly sensitive3-1 (sos3-1) mutant, we isolated the anthocyanin-impaired-response-1 (air1) mutant. air1 is unable to accumulate anthocyanins under salt stress, a key phenotype of sos3-1 under high NaCl levels (120 mM). The air1 mutant showed a defect in anthocyanin production in response to salt stress but not to other stresses such as high light, low phosphorous, high temperature or drought stress. This specificity indicated that air1 mutation did not affect anthocyanin biosynthesis but rather its regulation in response to salt stress. Analysis of this mutant revealed a T-DNA insertion at the first exon of an Arabidopsis thaliana gene encoding for a basic region-leucine zipper transcription factor. air1 mutants displayed higher survival rates compared to wild-type in oxidative stress conditions, and presented an altered expression of anthocyanin biosynthetic genes such as F3H, F3’H and LDOX in salt stress conditions. The results presented here indicate that AIR1 is involved in the regulation of various steps of the flavonoid and anthocyanin accumulation pathways and is itself regulated by the salt-stress response signalling machinery. The discovery and characterization of AIR1 opens avenues to dissect the connections between abiotic stress and accumulation of antioxidants in the form of flavonoids and anthocyanins.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-4412 1573-5028 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4616  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: