toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Tao, F.; Zhang, Z.; Zhang, S.; Rötter, R.P. url  doi
openurl 
  Title Variability in crop yields associated with climate anomalies in China over the past three decades Type Journal Article
  Year 2016 Publication Regional Environmental Change Abbreviated Journal Reg Environ Change  
  Volume 16 Issue 6 Pages 1715-1723  
  Keywords Adaptation; Climate change; Climate extremes; Drought; Impacts and vulnerability  
  Abstract (down) We used simple and explicit methods, as well as improved datasets for climate, crop phenology and yields, to address the association between variability in crop yields and climate anomalies in China from 1980 to 2008. We identified the most favourable and unfavourable climate conditions and the optimum temperatures for crop productivity in different regions of China. We found that the simultaneous occurrence of high temperatures, low precipitation and high solar radiation was unfavourable for wheat, maize and soybean productivity in large portions of northern, northwestern and northeastern China; this was because of droughts induced by warming or an increase in solar radiation. These climate anomalies could cause yield losses of up to 50 % for wheat, maize and soybeans in the arid and semi-arid regions of China. High precipitation and low solar radiation were unfavourable for crop productivity throughout southeastern China and could cause yield losses of approximately 20 % for rice and 50 % for wheat and maize. High temperatures were unfavourable for rice productivity in southwestern China because they induced heat stress, which could cause rice yield losses of approximately 20 %. In contrast, high temperatures and low precipitation were favourable for rice productivity in northeastern and eastern China. We found that the optimum temperatures for high yields were crop specific and had an explicit spatial pattern. These findings improve our understanding of the impacts of extreme climate events on agricultural production in different regions of China.  
  Address 2016-06-20  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1436-3798 1436-378x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4757  
Permanent link to this record
 

 
Author Hoffmann, H.; Zhao, G.; Asseng, S.; Bindi, M.; Biernath, C.; Constantin, J.; Coucheney, E.; Dechow, R.; Doro, L.; Eckersten, H.; Gaiser, T.; Grosz, B.; Heinlein, F.; Kassie, B.T.; Kersebaum, K.-C.; Klein, C.; Kuhnert, M.; Lewan, E.; Moriondo, M.; Nendel, C.; Priesack, E.; Raynal, H.; Roggero, P.P.; Rötter, R.P.; Siebert, S.; Specka, X.; Tao, F.; Teixeira, E.; Trombi, G.; Wallach, D.; Weihermüller, L.; Yeluripati, J.; Ewert, F. url  doi
openurl 
  Title Impact of spatial soil and climate input data aggregation on regional yield simulations Type Journal Article
  Year 2016 Publication PLoS One Abbreviated Journal PLoS One  
  Volume 11 Issue 4 Pages e0151782  
  Keywords systems simulation; nitrogen dynamics; winter-wheat; crop models; data resolution; scale; water; variability; calibration; weather  
  Abstract (down) We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4725  
Permanent link to this record
 

 
Author Refsgaard, J.C.; Arnbjerg-Nielsen, K.; Drews, M.; Halsnaes, K.; Jeppesen, E.; Madsen, H.; Markandya, A.; Olesen, J.E.; Porter, J.R.; Christensen, J.H. url  doi
openurl 
  Title The role of uncertainty in climate change adaptation strategies – a Danish water management example Type Journal Article
  Year 2013 Publication Mitigation and Adaptation Strategies for Global Change Abbreviated Journal Mitig. Adapt. Strateg. Glob. Change  
  Volume 18 Issue 3 Pages 337-359  
  Keywords Climate change; Adaptation; Uncertainty; Risk; Water sectors; Multi-disciplinary; change impacts; global change; winter-wheat; models; scenarios; ensembles; denmark; vulnerability; community; knowledge  
  Abstract (down) We propose a generic framework to characterize climate change adaptation uncertainty according to three dimensions: level, source and nature. Our framework is different, and in this respect more comprehensive, than the present UN Intergovernmental Panel on Climate Change (IPCC) approach and could be used to address concerns that the IPCC approach is oversimplified. We have studied the role of uncertainty in climate change adaptation planning using examples from four Danish water related sectors. The dominating sources of uncertainty differ greatly among issues; most uncertainties on impacts are epistemic (reducible) by nature but uncertainties on adaptation measures are complex, with ambiguity often being added to impact uncertainties. Strategies to deal with uncertainty in climate change adaptation should reflect the nature of the uncertainty sources and how they interact with risk level and decision making: (i) epistemic uncertainties can be reduced by gaining more knowledge; (ii) uncertainties related to ambiguity can be reduced by dialogue and knowledge sharing between the different stakeholders; and (iii) aleatory uncertainty is, by its nature, non-reducible. The uncertainty cascade includes many sources and their propagation through technical and socio-economic models may add substantially to prediction uncertainties, but they may also cancel each other. Thus, even large uncertainties may have small consequences for decision making, because multiple sources of information provide sufficient knowledge to justify action in climate change adaptation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1381-2386 1573-1596 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4613  
Permanent link to this record
 

 
Author Elliott, J.; Müller, C.; Deryng, D.; Chryssanthacopoulos, J.; Boote, K.J.; Büchner, M.; Foster, I.; Glotter, M.; Heinke, J.; Iizumi, T.; Izaurralde, R.C.; Mueller, N.D.; Ray, D.K.; Rosenzweig, C.; Ruane, A.C.; Sheffield, J. url  doi
openurl 
  Title The Global Gridded Crop Model Intercomparison: data and modeling protocols for Phase 1 (v1.0) Type Journal Article
  Year 2015 Publication Geoscientific Model Development Abbreviated Journal Geosci. Model Dev.  
  Volume 8 Issue 2 Pages 261-277  
  Keywords land-surface model; climate-change; systems simulation; high-resolution; water; carbon; yield; agriculture; patterns; growth  
  Abstract (down) We present protocols and input data for Phase 1 of the Global Gridded Crop Model Intercomparison, a project of the Agricultural Model Intercomparison and Improvement Project (AgMIP). The project includes global simulations of yields, phenologies, and many land-surface fluxes using 12-15 modeling groups for many crops, climate forcing data sets, and scenarios over the historical period from 1948 to 2012. The primary outcomes of the project include (1) a detailed comparison of the major differences and similarities among global models commonly used for large-scale climate impact assessment, (2) an evaluation of model and ensemble hindcasting skill, (3) quantification of key uncertainties from climate input data, model choice, and other sources, and (4) a multi-model analysis of the agricultural impacts of large-scale climate extremes from the historical record.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1991-9603 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4559  
Permanent link to this record
 

 
Author Schönhart, M.; Schauppenlehner, T.; Schmid, E. url  openurl
  Title Integrated land use modelling of climate change impacts – preliminary results from two Austrian case study landscapes Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (down) We present an integrated land use modelling framework (ILM) to analyze impacts of climate change and CAP reform as well as farm adaptation using economic, biotic and abiotic indicators at field, farm and landscape scales. The IML is applied on the two contrasting landscapes in the Austrian MACSUR regional pilot study. The scenarios cover climate and policy changes until 2040. The anticipated policy changes lead to declines in farm gross margins by -36% and -5% in the two landscapes, respectively. In contrast, climate change leads to higher gross margins, where farms can reach pre-reform levels on average. Environmental impacts such as removing of landscape elements and increasing fertilization can be moderated by an agri-environmental program, but the opportunity costs of program participation may increase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume 3(S) Sassari, Italy Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5091  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: