|   | 
Details
   web
Records
Author Ramirez-Villegas, J.; Watson, J.; Challinor, A.J.
Title Identifying traits for genotypic adaptation using crop models Type Journal Article
Year 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.
Volume 66 Issue 12 Pages 3451-3462
Keywords Adaptation, Physiological/*genetics; Crops, Agricultural/*genetics; Environment; Genotype; *Models, Theoretical; *Quantitative Trait, Heritable; Climate change; crop models; genotypic adaptation; ideotypes; impacts
Abstract (up) Genotypic adaptation involves the incorporation of novel traits in crop varieties so as to enhance food productivity and stability and is expected to be one of the most important adaptation strategies to future climate change. Simulation modelling can provide the basis for evaluating the biophysical potential of crop traits for genotypic adaptation. This review focuses on the use of models for assessing the potential benefits of genotypic adaptation as a response strategy to projected climate change impacts. Some key crop responses to the environment, as well as the role of models and model ensembles for assessing impacts and adaptation, are first reviewed. Next, the review describes crop-climate models can help focus the development of future-adapted crop germplasm in breeding programmes. While recently published modelling studies have demonstrated the potential of genotypic adaptation strategies and ideotype design, it is argued that, for model-based studies of genotypic adaptation to be used in crop breeding, it is critical that modelled traits are better grounded in genetic and physiological knowledge. To this aim, two main goals need to be pursued in future studies: (i) a better understanding of plant processes that limit productivity under future climate change; and (ii) a coupling between genetic and crop growth models-perhaps at the expense of the number of traits analysed. Importantly, the latter may imply additional complexity (and likely uncertainty) in crop modelling studies. Hence, appropriately constraining processes and parameters in models and a shift from simply quantifying uncertainty to actually quantifying robustness towards modelling choices are two key aspects that need to be included into future crop model-based analyses of genotypic adaptation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0957 1460-2431 ISBN Medium Review
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4645
Permanent link to this record
 

 
Author Christen, B.; Kjeldsen, C.; Dalgaard, T.; Martin-Ortega, J.
Title Can fuzzy cognitive mapping help in agricultural policy design and communication? Type Journal Article
Year 2015 Publication Land Use Policy Abbreviated Journal Land Use Policy
Volume 45 Issue Pages 64-75
Keywords Agricultural policy; Agro-environmental measures; Fuzzy cognitive mapping (FCM); General Binding Rules; Stakeholder communication; Scottish agriculture
Abstract (up) Highlights •Fuzzy cognitive mapping (FCM)can help to improve agricultural policy design. •We analyse the views on regulation between farmers and non-farmers. •We demonstrate the utility of FCM in disentangling reasons for non-compliance. •Non-compliance is a result of dis-alignment of views rather than unwillingness. •FCM offers a critical, reflexive approach to how a regulatory process is conceived. Agricultural environmental regulation often fails to deliver the desired effects because of farmers adopting the related measures incorrectly or not at all. This is due to several barriers to the uptake of the prescribed environmentally beneficial farm management practices, most of which have been well established by social science research. Yet it is unclear why these barriers remain so difficult to overcome despite numerous and persistent attempts at the design, communication and enforcement of related agricultural policies. This paper examines the potential of fuzzy cognitive mapping (FCM) as a tool to disentangle the underlying reasons of this persistent problem. We present the FCM methodology as adapted to the application in a Scottish case study on how environmental regulation affects farmers and farming practice and what factors are important for compliance or non-compliance with this regulation. The study compares the views of two different stakeholder groups on this matter using FCM network visualizations that were validated by interviews and a workshop session. There was a farmers group representing a typical mix of Scottish farming systems and a non-farmers group, the latter comprising professionals from the fields of design, implementation, administration, consulting on and enforcement of agricultural policies. Between the two groups, the FCM process reveals a very different perception of importance and interaction of factors and strongly suggests that the problem lies in an institutional failure rather than in a simple unwillingness of farmers to obey the rules. FCM allows for a structured process of identifying areas of conflicting perceptions, but also areas where strongly differing groups of stakeholders might be able to gain common ground. In this way, FCM can help to identify anchoring points for targeted policy development and has the potential of becoming a useful tool in agricultural policy design and communication. Our results show the utility of FCM by pointing out how Scottish environmental regulation could be altered to increase compliance with the rules and where the reasons for the identified institutional failure might be sought.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium Article
Area Expedition Conference
Notes LiveM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4620
Permanent link to this record
 

 
Author Zimmermann, A.; Webber, H.; Zhao, G.; Ewert, F.; Kros, J.; Wolf, J.; Britz, W.; de Vries, W.
Title Climate change impacts on crop yields, land use and environment in response to crop sowing dates and thermal time requirements Type Journal Article
Year 2017 Publication Agricultural Systems Abbreviated Journal Agric. Syst.
Volume 157 Issue Pages 81-92
Keywords Integrated assessment; Crop management; Climate change; Europe; INTEGRATED ASSESSMENT; EUROPEAN AGRICULTURE; FOOD SECURITY; HEAT-STRESS; ADAPTATION; SYSTEMS; TEMPERATURE; SCENARIOS; WHEAT; PRODUCTIVITY; Vries W., 2011, ENVIRONMENTAL POLLUTION, V159, P3254
Abstract (up) Impacts of climate change on European agricultural production, land use and the environment depend on its impact on crop yields. However, many impact studies assume that crop management remains unchanged in future scenarios, while farmers may adapt their sowing dates and cultivar thermal time requirements to minimize yield losses or realize yield gains. The main objective of this study was to investigate the sensitivity of climate change impacts on European crop yields, land use, production and environmental variables to adaptations in crops sowing dates and varieties’ thermal time requirements. A crop, economic and environmental model were coupled in an integrated assessment modelling approach for six important crops, for 27 countries of the European Union (EU27) to assess results of three SRES climate change scenarios to 2050. Crop yields under climate change were simulated considering three different management cases; (i) no change in crop management from baseline conditions (NoAd), (ii) adaptation of sowing date and thermal time requirements to give highest yields to 2050 (Opt) and (iii) a more conservative adaptation of sowing date and thermal time requirements (Act). Averaged across EU27, relative changes in water-limited crop yields due to climate change and increased CO2 varied between -6 and + 21% considering NoAd management, whereas impacts with Opt management varied between + 12 and + 53%, and those under Act management between 2 and + 27%. However, relative yield increases under climate change increased to + 17 and + 51% when technology progress was also considered. Importantly, the sensitivity to crop management assumptions of land use, production and environmental impacts were less pronounced than for crop yields due to the influence of corresponding market, farm resource and land allocation adjustments along the model chain acting via economic optimization of yields. We conclude that assumptions about crop sowing dates and thermal time requirements affect impact variables but to a different extent and generally decreasing for variables affected by economic drivers.
Address 2017-11-02
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308-521x ISBN Medium article
Area Expedition Conference
Notes CropM, TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5178
Permanent link to this record
 

 
Author Pilbeam, D.J.
Title Breeding crops for improved mineral nutrition under climate change conditions Type Journal Article
Year 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.
Volume 66 Issue 12 Pages 3511-3421
Keywords Breeding/*methods; *Climate Change; Crops, Agricultural/*growth & development; Environment; Minerals/*metabolism; *Nutritional Physiological Phenomena; Micronutrient; nitrogen; nutrient availability; nutrient use efficiency; phosphorus; quantitative trait loci (QTLs)
Abstract (up) Improvements in understanding how climate change may influence chemical and physical processes in soils, how this may affect nutrient availability, and how plants may respond to changed availability of nutrients will influence crop breeding programmes. The effects of increased atmospheric CO2 and warmer temperatures, both individually and combined, on soil microbial activity, including mycorrhizas and N-fixing organisms, are evaluated, together with their implications for nutrient availability. Potential changes to plant growth, and the combined effects of soil and plant changes on nutrient uptake, are discussed. The organization of research on the efficient use of macro- and micronutrients by crops under climate change conditions is outlined, including analysis of QTLs for nutrient efficiency. Suggestions for how the information gained can be used in plant breeding programmes are given.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1460-2431; 0022-0957 ISBN Medium Review
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4575
Permanent link to this record
 

 
Author Wolf, J.; Kanellopoulos, A.; Kros, J.; Webber, H.; Zhao, G.; Britz, W.; Reinds, G.J.; Ewert, F.; de Vries, W.
Title Combined analysis of climate, technological and price changes on future arable farming systems in Europe Type Journal Article
Year 2015 Publication Agricultural Systems Abbreviated Journal Agricultural Systems
Volume 140 Issue Pages 56-73
Keywords agriculture; capri; climate change; environmental impact; farming system; fssim; integrated assessment; integrator; model linkage; n emission; price change; scenarios; simplace; technological change; crop simulation-models; agricultural land-use; integrated assessment; growth; strategies; nitrogen; soils; environment; scenarios; emissions
Abstract (up) In this study, we compare the relative importance of climate change to technological, management, price and policy changes on European arable farming systems. This required linking four models: the SIMPLACE crop growth modelling framework to calculate future yields under climate change for arable crops; the CAPRI model to estimate impacts on global agricultural markets, specifically product prices; the bio-economic farm model FSSIM to calculate the future changes in cropping patterns and farm net income at the farm and regional level; and the environmental model INTEGRATOR to calculate nitrogen (N) uptake and losses to air and water. First, the four linked models were applied to analyse the effect of climate change only or a most likely baseline (i.e. B1) scenario for 2050 as well as for two alternative scenarios with, respectively, strong (i.e. A1-b1) and weak economic growth (B2) for five regions/countries across Europe (i.e. Denmark, Flevoland, Midi Pyrenees, Zachodniopomorsld and Andalucia). These analyses Were repeated but assuming in addition to climate change impacts, also the effects of changes in technology and management on crop yields, the effects of changes in prices and policies in 2050, and the effects of all factors together. The outcomes show that the effects of climate change to 2050 result in higher farm net incomes in the Northern and Northern-Central EU regions, in practically unchanged farm net incomes in the Central and Central-Southern EU regions, and in much lower farm net incomes in Southern EU regions compared to those in the base year. Climate change in combination with improved technology and farm management and/or with price changes towards 2050 results in a higher to much higher farm net incomes. Increases in farm net income for the B1 and A1-b1 scenarios are moderately stronger than those for the B2 scenario, due to the smaller increases in product prices and/or yields for the B2 scenario. Farm labour demand slightly to moderately increases towards 2050 as related to changes in cropping patterns. Changes in N2O emissions and N leaching compared to the base year are mainly caused by changes in total N inputs from the applied fertilizers and animal manure, which in turn are influenced by changes in crop yields and cropping patterns, whereas NH3 emissions are mainly determined by assumed improvements in manure application techniques. N emissions and N leaching strongly increase in Denmark and Zachodniopomorski, slightly decrease to moderately increase in Flevoland and Midi-Pyrenees, and strongly decrease in Andalucia, except for NH3 emissions which zero to moderately decrease in Flevoland and Denmark. (C) 2015 Elsevier Ltd. All tights reserved.
Address 2015-10-12
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308-521x ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4703
Permanent link to this record