|   | 
Details
   web
Records
Author Kahiluoto, H.; Kaseva, J.; Hakala, K.; Himanen, S.J.; Jauhiainen, L.; Rötter, R.P.; Salo, T.; Trnka, M.
Title Cultivating resilience by empirically revealing response diversity Type Journal Article
Year 2014 Publication Global Environmental Change Abbreviated Journal Glob. Environ. Change
Volume 25 Issue Pages 186-193
Keywords generic approach; climate change; food security; agrifood systems; cultivars; adaptive capacity; climate-change; functional diversity; plant-communities; genetic diversity; biodiversity; ecosystems; management; redundancy; evenness; weather
Abstract (down) Intensified climate and market turbulence requires resilience to a multitude of changes. Diversity reduces the sensitivity to disturbance and fosters the capacity to adapt to various future scenarios. What really matters is diversity of responses. Despite appeals to manage resilience, conceptual developments have not yet yielded a break-through in empirical applications. Here, we present an approach to empirically reveal the ‘response diversity’: the factors of change that are critical to a system are identified, and the response diversity is determined based on the documented component responses to these factors. We illustrate this approach and its added value using an example of securing food supply in the face of climate variability and change. This example demonstrates that quantifying response diversity allows for a new perspective: despite continued increase in cultivar diversity of barley, the diversity in responses to weather declined during the last decade in the regions where most of the barley is grown in Finland. This was due to greater homogeneity in responses among new cultivars than among older ones. Such a decline in the response diversity indicates increased vulnerability and reduced resilience. The assessment serves adaptive management in the face of both ecological and socioeconomic drivers. Supplier diversity in the food retail industry in order to secure affordable food in spite of global price volatility could represent another application. The approach is, indeed, applicable to any system for which it is possible to adopt empirical information regarding the response by its components to the critical factors of variability and change. Targeting diversification in response to critical change brings efficiency into diversity. We propose the generic procedure that is demonstrated in this study as a means to efficiently enhance resilience at multiple levels of agrifood systems and beyond. (C) 2014 The Authors. Published by Elsevier Ltd.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-3780 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4525
Permanent link to this record
 

 
Author Malone, R.W.; Kersebaum, K.C.; Kaspar, T.C.; Ma, L.; Jaynes, D.B.; Gillette, K.
Title Winter rye as a cover crop reduces nitrate loss to subsurface drainage as simulated by HERMES Type Journal Article
Year 2017 Publication Agricultural Water Management Abbreviated Journal Agric. Water Manage.
Volume 184 Issue Pages 156-169
Keywords Subsurface drainage, Cover crop, Nitrate loss, Modeling, Denitrification; NITROGEN DYNAMICS; TILE DRAINAGE; AGROECOSYSTEM MODELS; MISSISSIPPI; RIVER; GROWTH-MODEL; RZWQM-DSSAT; DRAINMOD-N; CATCH CROP; SOIL; WATER
Abstract (down) HERMES is a widely used agricultural system model; however, it has never been tested for simulating N loss to subsurface drainage. Here, we integrated a simple drain flbw component into HERMES. We then compared the predictions to four years of data (2002-2005) from central Iowa fields in corn-oybean with winter rye as a cover crop (CC) and without winter rye (NCC). We also compared the HERMES predictions to the more complex Root Zone Water Quality Model (RZWQM) predictions for the same dataset. The average annual observed and simulated N loss to drain flow were 43.8 and 44.4 kg N/ha (NCC) and 17.6 and 18.9 kg N/ha (CC). The slightly over predicted N loss for CC was because of over predicted nitrate concentration, which may be partly caused by slightly under predicted average annual rye shoot N (observed and simulated values were 47.8 and 46.0 kg N/ha). Also, recent research from the site suggests that the soil field capacity may be greater in CC while we used the same soil parameters for both treatments. A local sensitivity analysis suggests that increased field capacity affects HERMES simulations, which includes reduced drain flow nitrate concentrations, increased denitrification, and reduced drain flow volume. HERMES-simulated cumulative monthly drain flow and annual drain flow were reasonable compared to field data and HERMES performance was comparable to other published drainage model tests. Unlike the RZWQM simulations, however, the modified HERMES did riot accurately simulate the year to year variability in nitrate concentration difference between NCC and CC, possibly due in part to the lack of partial mixing and displacement of the soil solution. The results suggest that 1) the relatively simple model HERMES is a promising tool to estimate annual N loss to drain flow under corn-soybean rotations with winter rye as a cover crop and 2) soil field capacity is a critical parameter to investigate to more thoroughly understand and appropriately model denitrification and N losses to subsurface drainage. Published by Elsevier B.V.
Address 2017-04-28
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-3774 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4946
Permanent link to this record
 

 
Author Stürck, J.; Levers, C.; van der Zanden, E.H.; Schulp, C.J.E.; Verkerk, P.J.; Kuemmerle, T.; Helming, J.; Lotze-Campen, H.; Tabeau, A.; Popp, A.; Schrammeijer, E.; Verburg, P.
Title Simulating and delineating future land change trajectories across Europe Type Journal Article
Year 2015 Publication Regional Environmental Change Abbreviated Journal Reg. Environ. Change
Volume Issue Pages in press
Keywords land use change; land system; modeling; scenario; Europe; ecosystem services
Abstract (down) Explorations of future land use change are important to understand potential conflicts between competing land uses, trade-offs associated with particular land change trajectories, and the effectiveness of policies to steer land systems into desirable states. Most model-based explorations and scenario studies focused on conversions in broad land use classes, but disregarded changes in land management or focused on individual sectors only. Using the European Union (EU) as a case study, we developed an approach to identifying typical combinations of land cover and management changes by combining the results of multimodel simulations in the agriculture and forest sectors for four scenarios from 2000 to 2040. We visualized land change trajectories by mapping regional hotspots of change. Land change trajectories differed in extent and spatial pattern across the EU and among scenarios, indicating trajectory-specific option spaces for alternative land system outcomes. In spite of the large variation in the area of change, similar hotspots of land change were observed among the scenarios. All scenarios indicate a stronger polarization of land use in Europe, with a loss of multifunctional landscapes. We analyzed locations subject to change by comparing location characteristics associated with certain land change trajectories. Results indicate differences in the location conditions of different land change trajectories, with diverging impacts on ecosystem service provisioning. Policy and planning for future land use needs to account for the spatial variation of land change trajectories to achieve both overarching and location-specific targets.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1436-3798 ISBN Medium
Area Expedition Conference
Notes TradeM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4996
Permanent link to this record
 

 
Author Minet, J.; Laloy, E.; Tychon, B.; François, L.
Title Bayesian inversions of a dynamic vegetation model at four European grassland sites Type Journal Article
Year 2015 Publication Biogeosciences Abbreviated Journal Biogeosciences
Volume 12 Issue 9 Pages 2809-2829
Keywords eddy-covariance data; terrestrial ecosystem model; bioclimatic affinity; groups; monte-carlo-simulation; dry-matter content; leaf-area; climate-change; stomatal conductance; parameter-estimation; plant
Abstract (down) Eddy covariance data from four European grassland sites are used to probabilistically invert the CARAIB (CARbon Assimilation In the Biosphere) dynamic vegetation model (DVM) with 10 unknown parameters, using the DREAM((ZS)) (DiffeRential Evolution Adaptive Metropolis) Markov chain Monte Carlo (MCMC) sampler. We focus on comparing model inversions, considering both homoscedastic and heteroscedastic eddy covariance residual errors, with variances either fixed a priori or jointly inferred together with the model parameters. Agreements between measured and simulated data during calibration are comparable with previous studies, with root mean square errors (RMSEs) of simulated daily gross primary productivity (GPP), ecosystem respiration (RECO) and evapotranspiration (ET) ranging from 1.73 to 2.19, 1.04 to 1.56 g C m(-2) day(-1) and 0.50 to 1.28 mm day(-1), respectively. For the calibration period, using a homoscedastic eddy covariance residual error model resulted in a better agreement between measured and modelled data than using a heteroscedastic residual error model. However, a model validation experiment showed that CARAIB models calibrated considering heteroscedastic residual errors perform better. Posterior parameter distributions derived from using a heteroscedastic model of the residuals thus appear to be more robust. This is the case even though the classical linear heteroscedastic error model assumed herein did not fully remove heteroscedasticity of the GPP residuals. Despite the fact that the calibrated model is generally capable of fitting the data within measurement errors, systematic bias in the model simulations are observed. These are likely due to model inadequacies such as shortcomings in the photosynthesis modelling. Besides the residual error treatment, differences between model parameter posterior distributions among the four grassland sites are also investigated. It is shown that the marginal distributions of the specific leaf area and characteristic mortality time parameters can be explained by site-specific ecophysiological characteristics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1726-4189 ISBN Medium Article
Area Expedition Conference
Notes CropM LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4571
Permanent link to this record
 

 
Author Patil, R.H.; Laegdsmand, M.; Olesen, J.E.; Porter, J.R.
Title Soil temperature manipulation to study global warming effects in arable land: performance of buried heating-cable method Type Journal Article
Year 2014 Publication Environment and Ecology Research Abbreviated Journal Environment and Ecology Research
Volume 1 Issue 4 Pages 196-204
Keywords Climate Change; Climate Manipulation; Soil Warming; Heating Cables; Soil Temperature; Agro-Ecosystems
Abstract (down) Buried heating-cable method for manipulating soil temperature was designed and tested its performance in large concrete lysimeters grown with the wheat crop in Denmark. Soil temperature in heated plots was elevated by 5℃ compared with that in control by burying heating-cable at 0.1 m depth in a plough layer. Temperature sensors were placed at 0.05, 0.1 and 0.25 m depths in soil, and 0.1 m above the soil surface in all plots, which were connected to an automated data logger. Soil-warming setup was able to maintain a mean seasonal temperature difference of 5.0 ± 0.005℃ between heated and control plots at 0.1 m depth while the mean seasonal rise in soil temperature in the top 0.25 m depth (plough layer) was 3℃. Soil temperature in control plots froze (≤ 0℃) for 15 and 13 days respectively at 0.05 and 0.1 m depths while it did not in heated plots during the coldest period (Nov-Apr). This study clearly showed the efficacy of buried heating-cable technique in simulating soil temperature, and thus offers a simple, effective and alternative technique to study soil biogeochemical processes under warmer climates. This technique, however, decouples below-ground soil responses from that of above-ground vegetation response as this method heats only the soil. Therefore, using infrared heaters seems to represent natural climate warming (both air and soil) much more closely and may be used for future climate manipulation field studies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4632
Permanent link to this record