|   | 
Details
   web
Records
Author Lessire, F.
Title Effects of heat stress periods on milk production, milking frequency and rumination time of grazing dairy cows milked by a mobile automatic system in 2013 Type
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 5 Issue Pages Sp5-37
Keywords
Abstract (down) In Europe, analysis of meteorological data shows that the average temperature has increased by ~1°C over the past hundred years (IPCC, 2013). Heat stress periods are thus expected to be more frequent even in temperate areas.  The use of an automatic milking system (AMS) implies the need to stimulate cows’ traffic to the robot, especially with grazing cows.  Describing how heat stress influenced cows’ traffic to the robot is the aim of this study.Grazing dairy cows milked by an automatic system (AMS) experienced heat stress (HS) periods, twice during the summer 2013 in July (J) and August (A). The daily temperature humidity index (THI) during these periods were higher than 75. Each HS period was compared with a “normal period”(N), presenting the same number of cows, similar lactation number, days in milk, distance to come back to the robot and an equal access to water. The first HS period of 5 days with a mean THI of 78.4 was chosen in J, and a second that lasted for 6 days in A with a THI value of 77.3.  Heat stress periods were cut off with the same duration of days with no stress (N) and mean THI <70.  Milk production, milkings and returns to the robot during HS were compared with N periods.Milkings and visits to AMS were significantly more numerous in HS periods in July (HS: 2.44 vs N: 2.23, 3.97 vs 3.03) but milk production dropped from 20.3 kg to 19.3 kg milk per cow and per day. In August, MY increased slightly during HS.  This could be explained by less high ambient temperatures and decreased distance to walk inducing less energy expenditure.  The increase in milkings and visits to the robot during HS could be linked to water availability nearby the robot and confirmed previous findings (Lessire et al., 2014). No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK
Notes Approved no
Call Number MA @ admin @ Serial 2152
Permanent link to this record
 

 
Author Cammarano, D.; Rivington, M.; Matthews, K.; B,; Bellocchi, G.
Title Estimates of crop responses to climate change with quantified ranges of uncertainty Type Report
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 6 Issue Pages D-C4.1.3
Keywords
Abstract (down) In estimating responses of crops to future climate realisations, it is necessary to understand and differentiate between the sources of uncertainty in climate models and how these lead to errors in estimating the past climate and biases in future projections, and how these affect crop model estimates. This paper investigates the complexities in using climate model projections representing different spatial scales within climate change impacts and adaptation studies. This is illustrated by simulating spring barley with three crop models run using site-specific observed, original (50•50 km) and bias corrected downscaled (site-specific) hindcast (1960-1990) weather data from the HadRM3 Regional Climate Model (RCM). Original and bias corrected downscaled weather data were evaluated against the observed data. The comparisons made between the crop models were in the light of lessons learned from this data evaluation. Though the bias correction downscaling method improved the match between observed and hindcast data, this did not always translate into better matching of crop models estimates. At four sites the original HadRM3 data produced near identical mean simulated yield values as from the observed weather data, despite differences in the weather data, giving a situation of ‘right results for the wrong reasons’. This was likely due to compensating errors in the input weather data and non-linearity in crop models processes, making interpretation of results problematic. Overall, bias correction downscaling improved the quality of simulated outputs. Understanding how biases in climate data manifest themselves in crop models gives greater confidence in the utility of the estimates produced using downscaled future climate projections. The results indicate implications on how future projections of climate change impacts are interpreted. Fundamentally, considerable care is required in determining the impact weather data sources have in climate change impact and adaptation studies, whether from individual models or ensembles. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2098
Permanent link to this record
 

 
Author Castañeda-Vera, A.; Leffelaar, P.A.; Álvaro-Fuentes, J.; Cantero-Martínez, C.; Mínguez, M.I.
Title Selecting crop models for decision making in wheat insurance Type Journal Article
Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume 68 Issue Pages 97-116
Keywords aquacrop; ceres-wheat; cropsyst; wofost; model choice; rainfed semi-arid areas; radiation use efficiency; water deficit; use efficiency; management-practices; farming systems; field-capacity; soil; yield; evaporation; photosynthesis; transpiration; irrigation
Abstract (down) In crop insurance, the accuracy with which the insurer quantifies the actual risk is highly dependent on the availability on actual yield data. Crop models might be valuable tools to generate data on expected yields for risk assessment when no historical records are available. However, selecting a crop model for a specific objective, location and implementation scale is a difficult task. A look inside the different crop and soil modules to understand how outputs are obtained might facilitate model choice. The objectives of this paper were (i) to assess the usefulness of crop models to be used within a crop insurance analysis and design and (ii) to select the most suitable crop model for drought risk assessment in semi-arid regions in Spain. For that purpose first, a pre-selection of crop models simulating wheat yield under rainfed growing conditions at the field scale was made, and second, four selected models (Aquacrop, CERES-Wheat, CropSyst and WOFOST) were compared in terms of modelling approaches, process descriptions and model outputs. Outputs of the four models for the simulation of winter wheat growth are comparable when water is not limiting, but differences are larger when simulating yields under rainfed conditions. These differences in rainfed yields are mainly related to the dissimilar simulated soil water availability and the assumed linkages with dry matter formation. We concluded that for the simulation of winter wheat growth at field scale in such semi-arid conditions, CERES-Wheat and CropSyst are preferred. WOFOST is a satisfactory compromise between data availability and complexity when detail data on soil is limited. Aquacrop integrates physiological processes in some representative parameters, thus diminishing the number of input parameters, what is seen as an advantage when observed data is scarce. However, the high sensitivity of this model to low water availability limits its use in the region considered. Contrary to the use of ensembles of crop models, we endorse that efforts be concentrated on selecting or rebuilding a model that includes approaches that better describe the agronomic conditions of the regions in which they will be applied. The use of such complex methodologies as crop models is associated with numerous sources of uncertainty, although these models are the best tools available to get insight in these complex agronomic systems. (C) 2015 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4710
Permanent link to this record
 

 
Author Banse, M.
Title What drives meat consumption? Combining cross-country analysis with an applied trade model Type
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 5 Issue Pages Sp5-3
Keywords
Abstract (down) In a cross country analysis using national data for both OECD and developing countries, we estimate a regression model with different coefficients for different drivers for per capita meat consumption. The model contains data from approximately 125 countries (depending on the variables included) on meat consumption and production, relative size of agricultural area and pasture and meadows, PPP adjusted consumer prices for meat (and for food as control variable), PPP adjusted GNI per capita, HDI, degree of urbanisation, religion and geographical/cultural belonging.A regression analysis has been conducted, using OLS with data from 2011 and an aggregation of all meat types as the dependent variable. In the results all of the mentioned variables have a significant impact on meat consumption.Based on a first scenario analysis which has been presented on a TradeM Workshop of MACSUR in September 2014, this paper will extend the approach of an estimated cross-country analysis to improve the demand elasticities in the MAGNET model for meat and meat products. Further other demand determining factors of meat consumption, e.g. behavioural change towards less meat consumption (vegetarian or vegan) derived from the regression analysis will be fed into the MAGNET model. This extended approach will help to analyse the resulting market effects of a changing demand pattern for meat.  MAGNET will provide insights in consequences on supply and international trade for meat and meat products.The aim of this combined approach is to further explore the relationship between production and consumption, and to what extent the one is driving the other. Based on the application of the panel data method for a detailed demand analysis with the combination of the feedback from the supply and trade side based on the MAGNET model we will be able to provide a tool which is able to address the important questions of demand responses under different adaptation or mitigation strategies towards clime change, such as tax measures like fat taxes. This extended tool also contributes to an improved decision making process of policy makers under different options to respond to climate change issues – not only with regard to the supply side of agricultural production but also to the consumption side. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK
Notes Approved no
Call Number MA @ admin @ Serial 2118
Permanent link to this record
 

 
Author Scollan, N.; Bannink, A.; Kipling, R.; Saetnan, E.; Van Middelkoop, J.
Title Livestock and feed production, especially dairy and beef Type Conference Article
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 6 Issue Pages Sp6-3
Keywords
Abstract (down) Improving health and welfare is an important adaptation and mitigation strategyDeveloping process based modelling, responsive to adaptationLinks to climate and land use change modelling are essential Livestock systems likely to be hit hardest by climate changeNeed to develop animal health models that respond to adaptation by farmersBringing together direct and indirect impacts of climate change vitalAdaptation and mitigation need to be considered and modelled togetherLinking models across scales is important to support policy decisionsLearning between sectors carries potential for novel solutions and methodological advancesEffective communication of outcomes to stakeholders (how?) No Label
Address
Corporate Author Thesis
Publisher Place of Publication Brussels Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Climate-change impacts on farming systems in the next decades: Why worry when you have CAP? A FACCE MACSUR workshop for policymakers
Notes Approved no
Call Number MA @ admin @ Serial 2084
Permanent link to this record