toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Minet, J.; Laloy, E.; Tychon, B.; François, L. url  doi
openurl 
  Title Bayesian inversions of a dynamic vegetation model at four European grassland sites Type Journal Article
  Year 2015 Publication Biogeosciences Abbreviated Journal Biogeosciences  
  Volume 12 Issue 9 Pages 2809-2829  
  Keywords eddy-covariance data; terrestrial ecosystem model; bioclimatic affinity; groups; monte-carlo-simulation; dry-matter content; leaf-area; climate-change; stomatal conductance; parameter-estimation; plant  
  Abstract (up) Eddy covariance data from four European grassland sites are used to probabilistically invert the CARAIB (CARbon Assimilation In the Biosphere) dynamic vegetation model (DVM) with 10 unknown parameters, using the DREAM((ZS)) (DiffeRential Evolution Adaptive Metropolis) Markov chain Monte Carlo (MCMC) sampler. We focus on comparing model inversions, considering both homoscedastic and heteroscedastic eddy covariance residual errors, with variances either fixed a priori or jointly inferred together with the model parameters. Agreements between measured and simulated data during calibration are comparable with previous studies, with root mean square errors (RMSEs) of simulated daily gross primary productivity (GPP), ecosystem respiration (RECO) and evapotranspiration (ET) ranging from 1.73 to 2.19, 1.04 to 1.56 g C m(-2) day(-1) and 0.50 to 1.28 mm day(-1), respectively. For the calibration period, using a homoscedastic eddy covariance residual error model resulted in a better agreement between measured and modelled data than using a heteroscedastic residual error model. However, a model validation experiment showed that CARAIB models calibrated considering heteroscedastic residual errors perform better. Posterior parameter distributions derived from using a heteroscedastic model of the residuals thus appear to be more robust. This is the case even though the classical linear heteroscedastic error model assumed herein did not fully remove heteroscedasticity of the GPP residuals. Despite the fact that the calibrated model is generally capable of fitting the data within measurement errors, systematic bias in the model simulations are observed. These are likely due to model inadequacies such as shortcomings in the photosynthesis modelling. Besides the residual error treatment, differences between model parameter posterior distributions among the four grassland sites are also investigated. It is shown that the marginal distributions of the specific leaf area and characteristic mortality time parameters can be explained by site-specific ecophysiological characteristics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1726-4189 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4571  
Permanent link to this record
 

 
Author Makowski, D.; Asseng, S.; Ewert, F.; Bassu, S.; Durand, J.L.; Li, T.; Martre, P.; Adam, M.; Aggarwal, P.K.; Angulo, C.; Baron, C.; Basso, B.; Bertuzzi, P.; Biernath, C.; Boogaard, H.; Boote, K.J.; Bouman, B.; Bregaglio, S.; Brisson, N.; Buis, S.; Cammarano, D.; Challinor, A.J.; Confalonieri, R.; Conijn, J.G.; Corbeels, M.; Deryng, D.; De Sanctis, G.; Doltra, J.; Fumoto, T.; Gaydon, D.; Gayler, S.; Goldberg, R.; Grant, R.F.; Grassini, P.; Hatfield, J.L.; Hasegawa, T.; Heng, L.; Hoek, S.; Hooker, J.; Hunt, L.A.; Ingwersen, J.; Izaurralde, R.C.; Jongschaap, R.E.E.; Jones, J.W.; Kemanian, R.A.; Kersebaum, K.C.; Kim, S.-H.; Lizaso, J.; Marcaida, M.; Müller, C.; Nakagawa, H.; Naresh Kumar, S.; Nendel, C.; O’Leary, G.J.; Olesen, J.E.; Oriol, P.; Osborne, T.M.; Palosuo, T.; Pravia, M.V.; Priesack, E.; Ripoche, D.; Rosenzweig, C.; Ruane, A.C.; Ruget, F.; Sau, F.; Semenov, M.A.; Shcherbak, I.; Singh, B.; Singh, U.; Soo, H.K.; Steduto, P.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tang, L.; Tao, F.; Teixeira, E.I.; Thorburn, P.; Timlin, D.; Travasso, M.; Rötter, R.P.; Waha, K.; Wallach, D.; White, J.W.; Wilkens, P.; Williams, J.R.; Wolf, J.; Yin, X.; Yoshida, H.; Zhang, Z.; Zhu, Y. url  doi
openurl 
  Title A statistical analysis of three ensembles of crop model responses to temperature and CO2 concentration Type Journal Article
  Year 2015 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 214-215 Issue Pages 483-493  
  Keywords climate change; crop model; emulator; meta-model; statistical model; yield; climate-change; wheat yields; metaanalysis; uncertainty; simulation; impacts  
  Abstract (up) Ensembles of process-based crop models are increasingly used to simulate crop growth for scenarios of temperature and/or precipitation changes corresponding to different projections of atmospheric CO2 concentrations. This approach generates large datasets with thousands of simulated crop yield data. Such datasets potentially provide new information but it is difficult to summarize them in a useful way due to their structural complexities. An associated issue is that it is not straightforward to compare crops and to interpolate the results to alternative climate scenarios not initially included in the simulation protocols. Here we demonstrate that statistical models based on random-coefficient regressions are able to emulate ensembles of process-based crop models. An important advantage of the proposed statistical models is that they can interpolate between temperature levels and between CO2 concentration levels, and can thus be used to calculate temperature and [CO2] thresholds leading to yield loss or yield gain, without rerunning the original complex crop models. Our approach is illustrated with three yield datasets simulated by 19 maize models, 26 wheat models, and 13 rice models. Several statistical models are fitted to these datasets, and are then used to analyze the variability of the yield response to [CO2] and temperature. Based on our results, we show that, for wheat, a [CO2] increase is likely to outweigh the negative effect of a temperature increase of +2 degrees C in the considered sites. Compared to wheat, required levels of [CO2] increase are much higher for maize, and intermediate for rice. For all crops, uncertainties in simulating climate change impacts increase more with temperature than with elevated [CO2].  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4714  
Permanent link to this record
 

 
Author Meyer, P. doi  openurl
  Title Epigenetic variation and environmental change Type Journal Article
  Year 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.  
  Volume 66 Issue 12 Pages 3541-3548  
  Keywords DNA Methylation/genetics; DNA Transposable Elements/genetics; *Environment; *Epigenesis, Genetic; Plants/genetics; Stress, Physiological/genetics; Adaptation; DNA methylation; epigenetics; stress response  
  Abstract (up) Environmental conditions can change the activity of plant genes via epigenetic effects that alter the competence of genetic information to be expressed. This may provide a powerful strategy for plants to adapt to environmental change. However, as epigenetic changes do not modify DNA sequences and are therefore reversible, only those epi-mutations that are transmitted through the germline can be expected to contribute to a long-term adaptive response. The major challenge for the investigation of epigenetic adaptation theories is therefore to identify genomic loci that undergo epigenetic changes in response to environmental conditions, which alter their expression in a heritable way and which improve the plant’s ability to adapt to the inducing conditions. This review focuses on the role of DNA methylation as a prominent epigenetic mark that controls chromatin conformation, and on its potential in mediating expression changes in response to environmental signals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1460-2431 (Electronic) 0022-0957 (Linking) ISBN Medium Review  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4569  
Permanent link to this record
 

 
Author Rivington, M.; Wallach, D. url  openurl
  Title Quantified Evidence of Error Propagation Type Report
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 6 Issue Pages D-C4.2.3  
  Keywords  
  Abstract (up) Error propagation within models is an issue that requires a structured approach involving the testing of individual equations and evaluation of the consequences of error creation from imperfect equation and model structure on estimates of interest made by a model. This report briefly covers some of the key issues in error propagation and sets out several concepts, across a range of complexity, that may be used to organise an investigation into error propagation. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2102  
Permanent link to this record
 

 
Author Sandars, D. url  openurl
  Title Understanding Europe’s future ability to feed itself within an uncertain climate change and socio economic scenario space Type
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 5 Issue Pages Sp5-54  
  Keywords  
  Abstract (up) Europe’s ability to feed its population depends on the balance of agricultural productivity (yields and land suitability) and demand which are affected by future climate and socio-economic change (arising from changing food demand; prices; technology change etc).  Land use under 2050 climate change and socio-economic scenarios can be rapidly and systematically quantified with a modelling system that has been developed from meta-models of optimal cropping and crop and forest yields derived from the outputs of the previously developed complex models (Audsley et al; 2015). Profitability of each possible land use is modelled for every soil in every grid across the EU. Land use in a grid is then allocated based on profit thresholds set for intensive agriculture extensive agriculture, managed forest and finally unmanaged forest or unmanaged land.  The European demand for food as a function of population, imports, food preferences and bioenergy, is a production constraint, as is irrigation water available.   The model iterates until demand is satisfied (or cannot be met at any price).  Results are presented as contour plots of key variables. For example, given a 40% increase in population from the baseline socio-economic scenario, adapting by increasing crop yields by 40% will leave a 38% probability that the 2050 future climate will be such that we cannot feed ourselves – considering “all” the possible climate scenarios. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2169  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: