toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Francioni, M.; D’Ottavio, P.; Lai, R.; Trozzo, L.; Budimir, K.; Foresi, L.; Kishimoto-Mo, A.W.; Baldoni, N.; Allegrezza, M.; Tesei, G.; Toderi, M. doi  openurl
  Title Seasonal Soil Respiration Dynamics and Carbon-Stock Variations in Mountain Permanent Grasslands Compared to Arable Lands Type Journal Article
  Year 2019 Publication Agriculture-Basel Abbreviated Journal Agriculture-Basel  
  Volume 9 Issue 8 Pages 165  
  Keywords ecosystem services; C stock; CO2; GHG; land use change; Q(10); temperature; vegetation; patterns; emissions; climate  
  Abstract (down) Permanent grasslands provide a wide array of ecosystem services. Despite this, few studies have investigated grassland carbon (C) dynamics, and especially those related to the effects of land-use changes. This study aimed to determine whether the land-use change from permanent grassland to arable lands resulted in variations in the soil C stock, and whether such variations were due to increased soil respiration or to management practices. To address this, seasonal variations of soil respiration, sensitivity of soil respiration to soil temperature (Q(10)), and soil C stock variations generated by land-use changes were analyzed in a temperate mountain area of central Italy. The comparisons were performed for a permanent grassland and two adjacent fields, one cultivated with lentil and the other with emmer, during the 2015 crop year. Soil respiration and its heterotrophic component showed different spatial and temporal dynamics. Annual cumulative soil respiration rates were 6.05, 5.05 and 3.99 t C ha(-1) year(-1) for grassland, lentil and emmer, respectively. Both soil respiration and heterotrophic soil respiration were positively correlated with soil temperature at 10 cm depth. Derived Q(10) values were from 2.23 to 6.05 for soil respiration, and from 1.82 to 4.06 for heterotrophic respiration. Soil C stock at over 0.2 m in depth was 93.56, 48.74 and 46.80 t C ha(-1) for grassland, lentil and emmer, respectively. The land-use changes from permanent grassland to arable land lead to depletion in terms of the soil C stock due to water soil erosion. A more general evaluation appears necessary to determine the multiple effects of this land-use change at the landscape scale.  
  Address 2020-02-14  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5229  
Permanent link to this record
 

 
Author Fan, F.; Henriksen, C.B.; Porter, J. doi  openurl
  Title Relationship between stoichiometry and ecosystem services: A case study of it organic farming systems Type Journal Article
  Year 2018 Publication Ecological Indicators Abbreviated Journal Ecological Indicators  
  Volume 85 Issue Pages 400-408  
  Keywords Ecosystem services; Organic farming; Stoichiometry; Field practices; Soil Carbon Storage; Ecological Stoichiometry; Agricultural Management; Earthworm Populations; Nitrogen-Fixation; Cropping Systems; New-Zealand; Quantification; Valuation; Matter  
  Abstract (down) Over the past five decades, the delivery of global Ecosystem Services (ES) has diminished and this has been driven partly by anthropogenic activities. Agro-ecosystems cover almost 40% of the terrestrial surface on Earth, and have been considered as one of the most significant ecological experiments with a potential to both contribute to and mitigate global ES loss. In the present study, six different ES (food and fodder production, carbon sequestration, biological pest control, soil water storage, nitrogen regulation and soil formation) were quantified in various organic farming systems and the hypothesis that there is a link between these ES and C:N, C:O and H:O stoichiometric ratios in farming systems was experimentally tested. The results show that different ES are correlated with the stoichiometric ratios to different extents. There are significant positive linear correlations between C:N stoichiometric ratios and all measured ES in the investigated organic farming systems, while not all the ES are correlated with the C:O and H:O ratios. This study has expanded the horizons of stoichiometry by linking a fundamental chemical property of molecules with an emergent property of organic farming systems, namely their ecosystem service provision.  
  Address 2018-06-07  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1470-160x ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5201  
Permanent link to this record
 

 
Author Fan, F.; Henriksen, C.B.; Porter, J. doi  openurl
  Title Long-term effects of conversion to organic farming on ecosystem services – a model simulation case study and on-farm case study in Denmark Type Journal Article
  Year 2018 Publication Agroecology and Sustainable Food Systems Abbreviated Journal Agroecology and Sustainable Food Systems  
  Volume 42 Issue 5 Pages 504-529  
  Keywords Long-term; conversion; economic value; ecosystem services; organic farming; agricultural policytrade-offs; Greenhouse-Gas Emissions; Former Arable Soils; Daisy Model; Crop; Production; Conventional Agriculture; Straw Incorporation; Production; Systems; Nitrogen Dynamics; Climate-Change; Water-Balance  
  Abstract (down) Organic agriculture aims to produce food while establishing an ecological balance to augment ecosystem services (ES) and has been rapidly expanding in the world since the 1980s. Recently, however, in several European countries, including Denmark, organic farmers have converted back to conventional farming. Hence, understanding how agricultural ES are affected by the number of years since conversion to organic farming is imperative for policy makers to guide future agricultural policy. In order to investigate the long-term effects of conversion to organic farming on ES we performed i) a model simulation case study by applying the Daisy model to simulate 14 different conversion scenarios for a Danish farm during a 65 year period with increasing number of years under organic farming, and ii) an on-farm case study in Denmark with one conventional farm, one organic farm under conversion, and three organic farms converted 10, 15 and 58 years ago, respectively. Both the model simulation case study and the on-farm case study showed that non-marketable ES values increased with increasing number of years under organic farming. Trade-offs between marketable and non-marketable ES were not evident, since also marketable ES values generally showed an increasing trend, except when the price difference between organic and conventional products in the model simulation study was the smallest, and when an alfalfa pre-crop in the on-farm case study resulted in a significantly higher level of plant available nitrogen, which boosted the yield and the associated marketable ES of the subsequent winter rye crop. These results indicate a possible benefit of preserving long-term organic farms and could be used to argue for agricultural policy interventions to offset further reduction in the number of organic farms or the land area under organic farming.  
  Address 2018-05-03  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-3565 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5198  
Permanent link to this record
 

 
Author Porter, J.R.; Dyball, R.; Dumaresq, D.; Deutsch, L.; Matsuda, H. url  doi
openurl 
  Title Feeding capitals: Urban food security and self-provisioning in Canberra, Copenhagen and Tokyo Type Journal Article
  Year 2014 Publication Global Food Security Abbreviated Journal Global Food Security  
  Volume 3 Issue 1 Pages 1-7  
  Keywords cities; food security; self-provisioning; provisioning ecosystems  
  Abstract (down) Most people live in cities, but most food system studies and food security issues focus on the rural poor. Urban populations differ from rural populations in their food consumption by being generally wealthier, requiring food trade for their food security, defined as the extent to which people have adequate diets. Cities rarely have the self-provisioning capacity to satisfy their own food supply, understood as the extent to which the food consumed by the city’s population is produced from the city’s local agro-ecosystems. Almost inevitably, a city’s food security is augmented by production from remote landscapes, both internal and external in terms of a state’s jurisdiction. We reveal the internal and external food flows necessary for the food security of three wealthy capital cities (Canberra, Australia; Copenhagen, Denmark; Tokyo, Japan). These cities cover two orders of magnitude in population size and three orders of magnitude in population density. From traded volumes of food and their sources into the cities, we calculate the productivity of the city’s regional and non-regional ecosystems that provide food for these cities and estimate the overall utilised land area. The three cities exhibit differing degrees of food self provisioning capacity and exhibit large differences in the areas on which they depend to provide their food. We show that, since 1965, global land area effectively imported to produce food for these cities has increased with their expanding populations, with large reductions in the percentage of demand met by local agro-ecosystems. The physical trading of food commodities embodies ecosystem services, such as water, soil fertility and pollination that are required for land-based food production. This means that the trade in these embodied ecosystem services has become as important for food security as traditional economic mechanisms such as market access and trade. A future policy question, raised by our study, is the degree to which governments will remain committed to open food trade policies in the face of national political unrest caused by food shortages. Our study demonstrates the need to determine the food security and self-provisioning capacity of a wide range of rich and poor cities, taking into account the global location of the ecosystems that are provisioning them. (C) 2013 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-9124 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4636  
Permanent link to this record
 

 
Author Ghaley, B.B.; Sandhu, H.S.; Porter, J.R. doi  openurl
  Title Relationship between C:N/C:O stoichiometry and ecosystem services in managed production systems Type Journal Article
  Year 2015 Publication PLoS One Abbreviated Journal PLoS One  
  Volume 10 Issue 4 Pages e0123869  
  Keywords Carbon/*metabolism; *Conservation of Natural Resources/economics; Denmark; *Ecosystem; Fagus/metabolism; Forests; Nitrogen/*metabolism; Oxygen/*metabolism; Soil  
  Abstract (down) Land use and management intensity can influence provision of ecosystem services (ES). We argue that forest/agroforestry production systems are characterized by relatively higher C:O/C:N and ES value compared to arable production systems. Field investigations on C:N/C:O and 15 ES were determined in three diverse production systems: wheat monoculture (Cwheat), a combined food and energy system (CFE) and a beech forest in Denmark. The C:N/C:O ratios were 194.1/1.68, 94.1/1.57 and 59.5/1.45 for beech forest, CFE and Cwheat, respectively. The economic value of the non-marketed ES was also highest in beech forest (US$ 1089 ha(-1) yr(-1)) followed by CFE (US$ 800 ha(-1) yr(-1)) and Cwheat (US$ 339 ha(-1) yr(-1)). The combined economic value was highest in the CFE (US$ 3143 ha(-1) yr(-1)) as compared to the Cwheat (US$ 2767 ha(-1) yr(-1)) and beech forest (US$ 2365 ha(-1) yr(-1)). We argue that C:N/C:O can be used as a proxy of ES, particularly for the non-marketed ES, such as regulating, supporting and cultural services. These ES play a vital role in the sustainable production of food and energy. Therefore, they should be considered in decision making and developing appropriate policy responses for land use management.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4692  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: