|   | 
Details
   web
Records
Author Hutchings, N.J.; Özkan Gülzari, Ş.; de Haan, M.; Sandars, D.
Title How do farm models compare when estimating greenhouse gas emissions from dairy cattle production Type Journal Article
Year 2018 Publication Animal Abbreviated Journal (down) Animal
Volume 12 Issue 10 Pages 2171-2180
Keywords dairy cattle; farm-scale; model; greenhouse gas; Future Climate Scenarios; Systems-Analysis; Milk-Production; Crop; Production; Mitigation; Intensity; Impacts
Abstract The European Union Effort Sharing Regulation (ESR) will require a 30% reduction in greenhouse gas (GHG) emissions by 2030 compared with 2005 from the sectors not included in the European Emissions Trading Scheme, including agriculture. This will require the estimation of current and future emissions from agriculture, including dairy cattle production systems. Using a farm-scale model as part of a Tier 3 method for farm to national scales provides a more holistic and informative approach than IPCC (2006) Tier 2 but requires independent quality control. Comparing the results of using models to simulate a range of scenarios that explore an appropriate range of biophysical and management situations can support this process by providing a framework for placing model results in context. To assess the variation between models and the process of understanding differences, estimates of GHG emissions from four farm-scale models (DailyWise, FarmAC, HolosNor and SFARMMOD) were calculated for eight dairy farming scenarios within a factorial design consisting of two climates (cool/dry and warm/wet) x two soil types (sandy and clayey) x two feeding systems (grass only and grass/maize). The milk yield per cow, follower cow ratio, manure management system, nitrogen (N) fertilisation and land area were standardised for all scenarios in order to associate the differences in the results with the model structure and function. Potential yield and application of available N in fertiliser and manure were specified separately for grass and maize. Significant differences between models were found in GHG emissions at the farm-scale and for most contributory sources, although there was no difference in the ranking of source magnitudes. The farm-scale GHG emissions, averaged over the four models, was 10.6 t carbon dioxide equivalents (CO(2)e)/ha per year, with a range of 1.9 t CO(2)e/ha per year. Even though key production characteristics were specified in the scenarios, there were still significant differences between models in the annual milk production per ha and the amounts of N fertiliser and concentrate feed imported. This was because the models differed in their description of biophysical responses and feedback mechanisms, and in the extent to which management functions were internalised. We conclude that comparing the results of different farm-scale models when applied to a range of scenarios would build confidence in their use in achieving ESR targets, justifying further investment in the development of a wider range of scenarios and software tools.
Address 2019-01-07
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1751-7311 ISBN Medium
Area Expedition Conference
Notes TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5212
Permanent link to this record
 

 
Author Strauss, F.; Moltchanova, E.; Schmid, E.
Title Spatially explicit modeling of long-term drought impacts on crop production in Austria Type Journal Article
Year 2013 Publication American Journal of Climate Change Abbreviated Journal (down) American Journal of Climate Change
Volume 2 Issue 3 Pages 1-11
Keywords Long-Term Drought Modeling; Dry Day Index; Biophysical Impacts; Spatial Variability; EPIC; Austria
Abstract Droughts have serious and widespread impacts on crop production with substantial economic losses. The frequency and severity of drought events may increase in the future due to climate change. We have developed three meteorological drought scenarios for Austria in the period 2008-2040. The scenarios are defined based on a dry day index which is combined with bootstrapping from an observed daily weather dataset of the period 1975-2007. The severity of long-term drought scenarios is characterized by lower annual and seasonal precipitation amounts as well as more sig- nificant temperature increases compared to the observations. The long-term impacts of the drought scenarios on Aus- trian crop production have been analyzed with the biophysical process model EPIC (Environmental Policy Integrated Climate). Our simulation outputs show that—for areas with historical mean annual precipitation sums below 850 mm— already slight increases in dryness result in significantly lower crop yields i.e. depending on the drought severity, be- tween 0.6% and 0.9% decreases in mean annual dry matter crop yields per 1.0% decrease in mean annual precipitation sums. The EPIC results of more severe droughts show that spring and summer precipitation may become a limiting factor in crop production even in regions with historical abundant precipitation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2167-9495 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4507
Permanent link to this record
 

 
Author Schönhart, M.; Schauppenlehner, T.; Kuttner, M.; Kirchner, M.; Schmid, E.
Title Climate change impacts on farm production, landscape appearance, and the environment: Policy scenario results from an integrated field-farm-landscape model in Austria Type Journal Article
Year 2016 Publication Agricultural Systems Abbreviated Journal (down) Agricultural Systems
Volume 145 Issue Pages 39-50
Keywords Integrated land use modeling; Climate change impacts; Mitigation; Adaptation; Field-farm-landscape; Environment; agricultural landscapes; land-use; netherlands; adaptation; indicators; management; responses
Abstract Climate change is among the major drivers of agricultural land use change and demands autonomous farm adaptation as well as public mitigation and adaptation policies. In this article, we present an integrated land use model (ILM) mainly combining a bio-physical model and a bio-economic farm model at field, farm and landscape levels. The ILM is applied to a cropland dominated landscape in Austria to analyze impacts of climate change and mitigation and adaptation policy scenarios on farm production as well as on the abiotic environment and biotic environment. Changes in aggregated total farm gross margins from three climate change scenarios for 2040 range between + 1% and + 5% without policy intervention” and compared to a reference situation under the current climate. Changes in aggregated gross margins are even higher if adaptation policies are in place. However, increasing productivity from climate change leads to deteriorating environmental conditions such as declining plant species richness and landscape appearance. It has to be balanced by mitigation and adaptation policies taking into account effects from the considerable spatial heterogeneity such as revealed by the ILM. (C) 2016 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308-521x ISBN Medium Article
Area Expedition Conference
Notes CropM, TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4767
Permanent link to this record
 

 
Author Balkovič, J.; van der Velde, M.; Schmid, E.; Skalský, R.; Khabarov, N.; Obersteiner, M.; Stürmer, B.; Xiong, W.
Title Pan-European crop modelling with EPIC: Implementation, up-scaling and regional crop yield validation Type Journal Article
Year 2013 Publication Agricultural Systems Abbreviated Journal (down) Agricultural Systems
Volume 120 Issue Pages 61-75
Keywords EPIC; large-scale crop modelling; model performance testing; EU; climate-change; high-resolution; organic-carbon; growth-model; wheat yield; water; calibration; impacts; productivity; simulations
Abstract Justifiable usage of large-scale crop model simulations requires transparent, comprehensive and spatially extensive evaluations of their performance and associated accuracy. Simulated crop yields of a Pan-European implementation of the Environmental Policy Integrated Climate (EPIC) crop model were satisfactorily evaluated with reported regional yield data from EUROSTAT for four major crops, including winter wheat, rainfed and irrigated maize, spring barley and winter rye. European-wide land use, elevation, soil and daily meteorological gridded data were integrated in GIS and coupled with EPIC. Default EPIC crop and biophysical process parameter values were used with some minor adjustments according to suggestions from scientific literature. The model performance was improved by spatial calculations of crop sowing densities, potential heat units, operation schedules, and nutrient application rates. EPIC performed reasonable in the simulation of regional crop yields, with long-term averages predicted better than inter-annual variability: linear regression R-2 ranged from 0.58 (maize) to 0.91 (spring barley) and relative estimation errors were between +/- 30% for most of the European regions. The modelled and reported crop yields demonstrated similar responses to driving meteorological variables. However, EPIC performed better in dry compared to wet years. A yield sensitivity analysis of crop nutrient and irrigation management factors and cultivar specific characteristics for contrasting regions in Europe revealed a range in model response and attainable yields. We also show that modelled crop yield is strongly dependent on the chosen PET method. The simulated crop yield variability was lower compared to reported crop yields. This assessment should contribute to the availability of harmonised and transparently evaluated agricultural modelling tools in the EU as well as the establishment of modelling benchmarks as a requirement for sound and ongoing policy evaluations in the agricultural and environmental domains. (C) 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
Address 2016-06-01
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308-521x ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4737
Permanent link to this record
 

 
Author Dono, G.; Cortignani, R.; Doro, L.; Giraldo, L.; Ledda, L.; Pasqui, M.; Roggero, P.P.
Title Adapting to uncertainty associated with short-term climate variability changes in irrigated Mediterranean farming systems Type Journal Article
Year 2013 Publication Agricultural Systems Abbreviated Journal (down) Agricultural Systems
Volume 117 Issue Pages 1-12
Keywords changed climate variability; dsp; epic; adaptation; water management; irrigation; simulating impacts; co2 concentration; crop production; productivity; maize; yield; growth; model; photosynthesis; agriculture
Abstract Short-term perspectives appear to be relevant in formulating adaptation measures to changed climate variability (CCV) as a part of the European Rural Development Policy (RDP). Indeed, short-run CCV is the variation that farmers would perceive to such an extent that a political demand would be generated for adapting support measures. This study evaluates some relevant agronomic and economic impacts of CCV as modelled in a near future time period at the catchment scale in a rural district in Sardinia (Italy). The effects of CCV are assessed in relation to the availability of irrigation water and the irrigation needs of maize. The Environmental Policy Integrated Climate (EPIC) model was used to simulate the impact of key climatic variables on the irrigation water requirements and yields of maize. A three-stage discrete stochastic programming model was then applied to simulate management and economic responses to those changes. The overall economic impact of a simulated CCV was found to be primarily caused by reduced stability in the future supply of irrigation water. Adaptations to this instability will most likely lead to a higher level of groundwater extraction and a reduction in the demand for labour. Changed climate variability will most likely reduce the income potential of small-scale farming. The most CCV-vulnerable farm typologies were identified, and the implications were discussed in relation to the development of adaptation measures within the context of the Common Agricultural Policy of European Union. (C) 2013 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308521x ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4489
Permanent link to this record