toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bourgeois, C.; Fradj, N.B.; Jayet, P.-A. url  doi
openurl 
  Title How cost-effective is a mixed policy targeting the management of three agricultural N-pollutants Type Journal Article
  Year 2014 Publication Environmental Modelling & Assessment Abbreviated Journal (down) Environmental Modelling & Assessment  
  Volume 19 Issue 5 Pages 389-405  
  Keywords cost-effectiveness; mixed policy; n-input tax; land use policy; nitrogen pollutants; bioeconomic model; mathematical linear programming; miscanthus; nonpoint pollution-control; reed canary grass; biomass production; abatement costs; energy crop; miscanthus; nitrogen; model; efficiencies; instruments  
  Abstract This paper assesses the cost-effectiveness of a mixed policy in attempts to reduce the presence of three nitrogen pollutants: NO (3), N O-2, and NH (3). The policy under study combines a tax on nitrogen input and incentives promoting perennial crops assumed to require low input. We show that the mixed policy improves the cost-effectiveness of regulation with regard to nitrates, whereas no improvement occurs, except for a very low level of subsidy in some cases, for gas pollutants. A quantitative analysis provides an assessment of impacts in terms of land use, farmers’ income, and nitrogen losses throughout France and at river-basin scale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1420-2026 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM Approved no  
  Call Number MA @ admin @ Serial 4661  
Permanent link to this record
 

 
Author Weindl, I.; Lotze-Campen, H.; Popp, A.; Müller, C.; Havlík, P.; Herrero, M.; Schmitz, C.; Rolinski, S. url  doi
openurl 
  Title Livestock in a changing climate: production system transitions as an adaptation strategy for agriculture Type Journal Article
  Year 2015 Publication Environmental Research Letters Abbreviated Journal (down) Environ. Res. Lett.  
  Volume 10 Issue 9 Pages 094021  
  Keywords livestock; climate impacts; land use modeling; adaptation costs; production systems; greenhouse-gas emissions; global change; management implications; developing-countries; crop productivity; change mitigation; food security; model; impacts; carbon  
  Abstract Livestock farming is the world’s largest land use sector and utilizes around 60% of the global biomass harvest. Over the coming decades, climate change will affect the natural resource base of livestock production, especially the productivity of rangeland and feed crops. Based on a comprehensive impact modeling chain, we assess implications of different climate projections for agricultural production costs and land use change and explore the effectiveness of livestock system transitions as an adaptation strategy. Simulated climate impacts on crop yields and rangeland productivity generate adaptation costs amounting to 3% of total agricultural production costs in 2045 (i.e. 145 billion US$). Shifts in livestock production towards mixed crop-livestock systems represent a resource-and cost-efficient adaptation option, reducing agricultural adaptation costs to 0.3% of total production costs and simultaneously abating deforestation by about 76 million ha globally. The relatively positive climate impacts on grass yields compared with crop yields favor grazing systems inter alia in South Asia and North America. Incomplete transitions in production systems already have a strong adaptive and cost reducing effect: a 50% shift to mixed systems lowers agricultural adaptation costs to 0.8%. General responses of production costs to system transitions are robust across different global climate and crop models as well as regarding assumptions on CO2 fertilization, but simulated values show a large variation. In the face of these uncertainties, public policy support for transforming livestock production systems provides an important lever to improve agricultural resource management and lower adaptation costs, possibly even contributing to emission reduction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-9326 ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4718  
Permanent link to this record
 

 
Author Humpenöder, F.; Popp, A.; Dietrich, J.P.; Klein, D.; Lotze-Campen, H.; Bonsch, M.; Bodirsky, B.L.; Weindl, I.; Stevanovic, M.; Müller, C. url  doi
openurl 
  Title Investigating afforestation and bioenergy CCS as climate change mitigation strategies Type Journal Article
  Year 2014 Publication Environmental Research Letters Abbreviated Journal (down) Environ. Res. Lett.  
  Volume 9 Issue 6 Pages 064029  
  Keywords climate change mitigation; afforestation; bioenergy; carbon capture and storage; land-use modeling; land-based mitigation; carbon sequestration; land-use change; crop productivity; carbon capture; energy; storage; model; food; conservation; agriculture; scenarios  
  Abstract The land-use sector can contribute to climate change mitigation not only by reducing greenhouse gas (GHG) emissions, but also by increasing carbon uptake from the atmosphere and thereby creating negative CO2 emissions. In this paper, we investigate two land-based climate change mitigation strategies for carbon removal: (1) afforestation and (2) bioenergy in combination with carbon capture and storage technology (bioenergy CCS). In our approach, a global tax on GHG emissions aimed at ambitious climate change mitigation incentivizes land-based mitigation by penalizing positive and rewarding negative CO2 emissions from the land-use system. We analyze afforestation and bioenergy CCS as standalone and combined mitigation strategies. We find that afforestation is a cost-efficient strategy for carbon removal at relatively low carbon prices, while bioenergy CCS becomes competitive only at higher prices. According to our results, cumulative carbon removal due to afforestation and bioenergy CCS is similar at the end of 21st century (600-700 GtCO(2)), while land-demand for afforestation is much higher compared to bioenergy CCS. In the combined setting, we identify competition for land, but the impact on the mitigation potential (1000 GtCO(2)) is partially alleviated by productivity increases in the agricultural sector. Moreover, our results indicate that early-century afforestation presumably will not negatively impact carbon removal due to bioenergy CCS in the second half of the 21st century. A sensitivity analysis shows that land-based mitigation is very sensitive to different levels of GHG taxes. Besides that, the mitigation potential of bioenergy CCS highly depends on the development of future bioenergy yields and the availability of geological carbon storage, while for afforestation projects the length of the crediting period is crucial.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-9326 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, TradeM Approved no  
  Call Number MA @ admin @ Serial 4627  
Permanent link to this record
 

 
Author Walkiewicz, A.; Bulak, P.; Brzezinska, M.; Wnuk, E.; Bieganowski, A. doi  openurl
  Title Methane oxidation in heavy metal contaminated Mollic Gleysol under oxic and hypoxic conditions Type Journal Article
  Year 2016 Publication Environmental Pollution Abbreviated Journal (down) Environ. Pollut.  
  Volume 213 Issue Pages 403-411  
  Keywords Soil; Methane oxidation; CH4; Heavy metals; Oxygen status; Dehydrogenase; activity; methanotrophic bacteria; dehydrogenase-activity; potential activity; forest soils; responses; landfill; community; ch4; co2; bioremediation  
  Abstract Soils are the largest terrestrial sink for methane (CH4). However, heavy metals may exert toxicity to soil microorganisms, including methanotrophic bacteria. We tested the effect of lead (Pb), zinc (Zn) and nickel (Ni) on CH4 oxidation (1% v/v) and dehydrogenase activity, an index of the activity of the total soil microbial community in Mollic Gleysol soil in oxic and hypoxic conditions (oxia and hypoxia, 20% and 10% v/v O2, respectively). Metals were added in doses corresponding to the amounts permitted of Pb, Zn, Ni in agricultural soils (60, 120, 35 mg kg(-1), respectively), and half and double of these doses. Relatively low metal contents and O2 status reflect the conditions of most agricultural soils of temperate regions. Methane consumption showed high tolerance to heavy metals. The effect of O2 status was stronger than that of metals. CH4 consumption was enhanced under hypoxia, where both the start and the completion of the control and contaminated treatment were faster than under oxic conditions. Dehydrogenase activity, showed higher sensitivity to the contamination (except for low Ni dose), with a stronger effect of heavy metals, than that of the O2 status.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Newsletter July 2016 Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0269-7491 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4771  
Permanent link to this record
 

 
Author Ma, S.; Lardy, R.; Graux, A.-I.; Ben Touhami, H.; Klumpp, K.; Martin, R.; Bellocchi, G. url  doi
openurl 
  Title Regional-scale analysis of carbon and water cycles on managed grassland systems Type Journal Article
  Year 2015 Publication Environmental Modelling & Software Abbreviated Journal (down) Env. Model. Softw.  
  Volume 72 Issue Pages 356-371  
  Keywords carbon flux; eddy flux measurements; model evaluation; pasture simulation model (pasim); water balance; pasture simulation-model; nitrous-oxide emissions; primary productivity npp; comparing global-models; net ecosystem exchange; greenhouse-gas balance; climate-change; agricultural systems; co2 exchange; european grasslands  
  Abstract Predicting regional and global carbon (C) and water dynamics on grasslands has become of major interest, as grasslands are one of the most widespread vegetation types worldwide, providing a number of ecosystem services (such as forage production and C storage). The present study is a contribution to a regional-scale analysis of the C and water cycles on managed grasslands. The mechanistic biogeochemical model PaSim (Pasture Simulation model) was evaluated at 12 grassland sites in Europe. A new parameterization was obtained on a common set of eco-physiological parameters, which represented an improvement of previous parameterization schemes (essentially obtained via calibration at specific sites). We found that C and water fluxes estimated with the parameter set are in good agreement with observations. The model with the new parameters estimated that European grassland are a sink of C with 213 g C m(-2) yr(-1), which is close to the observed net ecosystem exchange (NEE) flux of the studied sites (185 g C m(-2) yr(-1) on average). The estimated yearly average gross primary productivity (GPP) and ecosystem respiration (RECO) for all of the study sites are 1220 and 1006 g C m(-2) yr(-1), respectively, in agreement with observed average GPP (1230 g C m(-2) yr(-1)) and RECO (1046 g C m(-2) yr(-1)). For both variables aggregated on a weekly basis, the root mean square error (RMSE) was similar to 5-16 g C week(-1) across the study sites, while the goodness of fit (R-2) was similar to 0.4-0.9. For evapotranspiration (ET), the average value of simulated ET (415 mmyr(-1)) for all sites and years is close to the average value of the observed ET (451 mm yr(-1)) by flux towers (on a weekly basis, RMSE similar to 2-8 mm week(-1); R-2 = 0.3-0.9). However, further model development is needed to better represent soil water dynamics under dry conditions and soil temperature in winter. A quantification of the uncertainties introduced by spatially generalized parameter values in C and water exchange estimates is also necessary. In addition, some uncertainties in the input management data call for the need to improve the quality of the observational system.  
  Address 2015-10-09  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8152 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4695  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: