|   | 
Details
   web
Records
Author Roggero, P.P.
Title IC-FAR – Linking long term observatories with crop system modelling for a better understanding of climate change impact and adaptation strategies for Italian cropping systems Type Journal Article
Year 2016 Publication European Journal of Agronomy Abbreviated Journal (down) European Journal of Agronomy
Volume 77 Issue Pages 136-137
Keywords long-term experiment; Italy
Abstract This special issue includes a sub-set of papers developed in the context of the three-years (2013-16) research project “IC-FAR – Linking long term observatories with crop system modelling for a better understanding of climate change impact and adaptation strategies for Italian cropping systems” (www.icfar.it), funded by the Italian Ministry of Education, University and Research. IC-FAR collects the legacy of some three-four generations of researchers, members of the Italian Society of Agronomy, that from the 1960ies onward established long term agro-ecosystem experiments (LTAE) in various Italian locations, to address a wide range of agronomy research questions. A lot of the results from these LTAE were not yet published or were published as grey literature or in Italian and almost always as a single-site, single-experiment outcome.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium Editorial Material
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4682
Permanent link to this record
 

 
Author Ginaldi, F.; Bindi, M.; Marta, A.D.; Ferrise, R.; Orlandini, S.; Danuso, F.
Title Interoperability of agronomic long term experiment databases and crop model intercomparison: the Italian experience Type Journal Article
Year 2016 Publication European Journal of Agronomy Abbreviated Journal (down) Europ. J. Agron.
Volume 77 Issue Pages 209-222
Keywords
Abstract • ICFAR-DB organises and stores data from 16 Italian long term agronomic experiments. • ICFAR-DB fulfils interoperability using system dynamics ontology and AgMIP nomenclature. • ICFAR information management system moves closer data to model and vice versa. The IC-FAR national project (Linking long term observatories with crop system modelling for better understanding of climate change impact, and adaptation strategies for Italian cropping systems) initiated in 2013 with the primary aim of implementing data from 16 long term Italian agronomic experiments in a common, interoperable structure. The building of a common database (DB) structure demands a harmonization process aimed at standardising concepts, language and data in order to make them clear, and has to produce a well-documented and easily available tool for the whole scientific community. The Agricultural Model Intercomparison and Improvement Project (AgMIP) has made a great effort in this sense, improving the vocabulary developed by the International Consortium for Agricultural Systems Applications (ICASA) and defining harmonization procedures. Nowadays, these ones have also to be addressed to facilitate the extraction of input files for crop model simulations. Substantially, two alternative directions can be pursued: adapting data to models, building a standard storage structure and using translators that convert DB information to model input files; or adapting models to data, using the same storage structure for feeding modelling solutions constituted by combining model components, re-implemented in the same model platform. The ICFAR information management system simplifies data entry, improves model input extraction (implementing System Dynamics ontology), and satisfies both the paradigms. This has required the development of different software tools: ICFAR-DB for data entry and storage; a model input extractor for feeding the crop models (MoLInEx); SEMoLa platform for building modelling solutions and performing via scripts the model intercomparison. The use of the standard AgMIP/ICASA nomenclature in the ICFAR-DB and the opportunity to create files with MoLInex for feeding AgMIP model translators allow full system interoperability.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4972
Permanent link to this record
 

 
Author Savary, S.; Jouanin, C.; Félix, I.; Gourdain, E.; Piraux, F.; Brun, F.; Willocquet, L.
Title Assessing plant health in a network of experiments on hardy winter wheat varieties in France: patterns of disease-climate associations Type Journal Article
Year 2016 Publication European Journal of Plant Pathology Abbreviated Journal (down) Eur. J. Plant Pathol.
Volume 146 Issue Pages 741-755
Keywords Puccinia triticina; Puccinia striiformis; Fusarium graminearum; Fusarium culmorum; Fusarium avenaceum; Blumeria graminis; Zymoseptoria tritici; Categorical data; Risk factor; Multiple pathosystem; Correspondence analysis; Logistic regression
Abstract A data set generated by a multi-year (2003–2010) and multi-site network of experiments on winter wheat varieties grown at different levels of crop management is analysed in order to assess the importance of climate on the variability of wheat health. Wheat health is represented by the multiple pathosystem involving five components: leaf rust, yellow rust, fusarium head blight, powdery mildew, and septoria tritici blotch. An overall framework of associations between multiple diseases and climate variables is developed. This framework involves disease levels in a binary form (i.e. epidemic vs. non-epidemic) and synthesis variables accounting for climate over spring and early summer. The multiple disease-climate pattern of associations of this framework conforms to disease-specific knowledge of climate effects on the components of the pathosystem. It also concurs with a (climate-based) risk factor approach to wheat diseases. This report emphasizes the value of large scale data in crop health assessment and the usefulness of a risk factor approach for both tactical and strategic decisions for crop health management.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0929-1873 1573-8469 ISBN Medium
Area CropM Expedition Conference
Notes CropMwp;wos; ftnot_macsur; Approved no
Call Number MA @ admin @ Serial 4755
Permanent link to this record
 

 
Author Stefańczyk, E.; Sobkowiak, S.; Brylińska, M.; Śliwka, J.
Title Diversity of Fusarium spp. associated with dry rot of potato tubers in Poland Type Journal Article
Year 2016 Publication European Journal of Plant Pathology Abbreviated Journal (down) Eur. J. Plant Pathol.
Volume Issue Pages
Keywords ITS; mycotoxin; pathogenicity; Solanum tuberosum; tef-1α; β-tubulin; sequence data; Trichothecenes; identification; fungus; pathogenicity; temperature; sensitivity; zearalenone; strains; disease
Abstract Fusarium spp. belong to the division Ascomycota and cause important plant diseases; these fungi may contaminate food products with mycotoxins, endangering human and animal health. Several Fusarium spp. have been associated with potato dry rot. The most frequent and devastating of these species are F. sambucinum, F. solani and F. oxysporum, depending on the geographic location and the season. Samples of potato tubers with dry rot symptoms were collected, and their putative fungal isolates were identified as Fusarium species using partial nucleotide sequences of the internal transcribed spacer, translation elongation factor 1-α and β-tubulin genes. Among 149 isolates, 12 species were identified. F. oxysporum was the most frequent (45 % of the isolates), followed by F. avenaceum (12.1 %), F. solani (10.7 %) and F. sambucinum (7.4 %). Phylogenetic analyses confirmed the species identifications and revealed a high diversity of F. solani and a low diversity of F. oxysporum. Potential producers of zearalenone and trichothecenes were identified within the obtained isolates using PCR markers. Isolates that were pathogenic to potatoes in laboratory tests were found in four species: F. sambucinum, F. avenaceum, F. culmorum, and F. graminearum. The effects of increased temperature and mixed inoculum on the pathogenicities of chosen species were evaluated. This study adds 434 potato-derived Fusarium sequences to the NCBI GenBank database and demonstrates that the list of Fusarium species and mycotoxins present in potato tubers may be richer than previously believed, regardless of whether these species cause dry rot or live as saprophytes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0929-1873 1573-8469 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4721
Permanent link to this record
 

 
Author Van Oijen, M.; Höglind, M.
Title Toward a Bayesian procedure for using process-based models in plant breeding, with application to ideotype design Type Journal Article
Year 2016 Publication Euphytica Abbreviated Journal (down) Euphytica
Volume 207 Issue 3 Pages 627-643
Keywords BASGRA; cold tolerance; genotype-environment interaction; plant breeding; process-based modelling; yield stability; grassland productivity; timothy regrowth; climate-change; water-deficit; forest models; late blight; leaf-area; calibration; growth; tolerance
Abstract Process-based grassland models (PBMs) simulate growth and development of vegetation over time. The models tend to have a large number of parameters that represent properties of the plants. To simulate different cultivars of the same species, different parameter values are required. Parameter differences may be interpreted as genetic variation for plant traits. Despite this natural connection between PBMs and plant genetics, there are only few examples of successful use of PBMs in plant breeding. Here we present a new procedure by which PBMs can help design ideotypes, i.e. virtual cultivars that optimally combine properties of existing cultivars. Ideotypes constitute selection targets for breeding. The procedure consists of four steps: (1) Bayesian calibration of model parameters using data from cultivar trials, (2) Estimating genetic variation for parameters from the combination of cultivar-specific calibrated parameter distributions, (3) Identifying parameter combinations that meet breeding objectives, (4) Translating model results to practice, i.e. interpreting parameters in terms of practical selection criteria. We show an application of the procedure to timothy (Phleum pratense L.) as grown in different regions of Norway.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0014-2336 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4820
Permanent link to this record