toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Porter, J.R.; Christensen, S. url  doi
openurl 
  Title Deconstructing crop processes and models via identities Type Journal Article
  Year 2013 Publication Plant Cell and Environment Abbreviated Journal (down) Plant Cell and Environment  
  Volume 36 Issue 11 Pages 1919-1925  
  Keywords Biomass; Carbon Dioxide/pharmacology; Climate Change; Crops, Agricultural/drug effects/*physiology; *Models, Biological; Kaya-Porter identity; crop models; deconstruction; resource use efficiency  
  Abstract This paper is part review and part opinion piece; it has three parts of increasing novelty and speculation in approach. The first presents an overview of how some of the major crop simulation models approach the issue of simulating the responses of crops to changing climatic and weather variables, mainly atmospheric CO2 concentration and increased and/or varying temperatures. It illustrates an important principle in models of a single cause having alternative effects and vice versa. The second part suggests some features, mostly missing in current crop models, that need to be included in the future, focussing on extreme events such as high temperature or extreme drought. The final opinion part is speculative but novel. It describes an approach to deconstruct resource use efficiencies into their constituent identities or elements based on the Kaya-Porter identity, each of which can be examined for responses to climate and climatic change. We give no promise that the final part is correct’, but we hope it can be a stimulation to thought, hypothesis and experiment, and perhaps a new modelling approach.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0140-7791 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4799  
Permanent link to this record
 

 
Author Paas, W.; Kanellopoulos, A.; van de Ven, G.; Reidsma, P. url  doi
openurl 
  Title Integrated impact assessment of climate and socio-economic change on dairy farms in a watershed in the Netherlands Type Journal Article
  Year 2016 Publication NJAS – Wageningen Journal of Life Sciences Abbreviated Journal (down) NJAS – Wageningen Journal of Life Sciences  
  Volume Issue Pages  
  Keywords climate change; bio-economic model; explorations; land-use; 2050-scenario  
  Abstract Climate and socio-economic change will affect the land use and the economic viability of Dutch dairy farms. Explorations of future scenarios, which include different drivers and impacts, are needed to perform ex-ante policy assessment. This study uses a bio-economic farm model to assess impacts of climate and socio-economic change on dairy farms in a sandy area in the Netherlands. Farm data from the Farm Accountancy Data Network provided information on the current production levels and available farm resources. First, the farm plans of individual farms were optimized in the current situation to benchmark farms and assess the current scope for improvement. Secondly, simulations for two scenarios were included: a Global Economy with 2 °C global temperature rise (GE/W+) and a Regional Community with 1 °C global temperature rise (RC/G). The impacts of climate change, extreme events, juridical change (including abolishment of milk quota), technological change and price changes were evaluated in separate model runs within the predefined scenarios. We found that farms can increase profit both by intensification and land expansion; the latter especially for medium sized farms (less than 70 cows). Climate change including the effect of increased occurrence of extreme events may negatively affect farm gross margin in the GE/W+ scenario. Lower gross margins are compensated for by the effects of technology and price changes. In contrast with the GE/W+ scenario, climate change has positive impacts on farm profit in RC/G, but less favourable farm input-output price ratios have a negative effect. Technological change is needed to compensate for revenue losses due to higher input prices. In both GE/W+ and RC/G scenarios, dairy farms increase production and the use of artificial fertilizer. Medium sized farms have more options to increase profit than the large farms: they benefit more from the abolishment of the milk quota and better adapt to negative and positive impacts of climate change. While the exact impact of different drivers will always remain uncertain, this study showed that changes in prices, technology and markets have a relatively larger impact than climate change, even when extreme events are taken into account. By using whole farm plans as activities that can be selected, the model is grounded in observations, and it was shown that half of the farms are gross margin maximizers as assumed in the model. The model therefore indicates ‘what could happen if’, and gives insights in drivers and impacts of dairy farming in the region.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1573-5214 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4712  
Permanent link to this record
 

 
Author Webber, H.; Ewert, F.; Olesen, J.E.; Müller, C.; Fronzek, S.; Ruane, A.C.; Bourgault, M.; Martre, P.; Ababaei, B.; Bindi, M.; Ferrise, R.; Finger, R.; Fodor, N.; Gabaldón-Leal, C.; Gaiser, T.; Jabloun, M.; Kersebaum, K.-C.; Lizaso, J.I.; Lorite, I.J.; Manceau, L.; Moriondo, M.; Nendel, C.; Rodríguez, A.; Ruiz-Ramos, M.; Semenov, M.A.; Siebert, S.; Stella, T.; Stratonovitch, P.; Trombi, G.; Wallach, D. doi  openurl
  Title Diverging importance of drought stress for maize and winter wheat in Europe Type Journal Article
  Year 2018 Publication Nature Communications Abbreviated Journal (down) Nat. Comm.  
  Volume 9 Issue Pages 4249  
  Keywords Climate-Change Impacts; Air CO2 Enrichment; Food Security; Heat-Stress; Nitrogen Dynamics; Semiarid Environments; Canopy Temperature; Simulation-Model; Crop Production; Elevated CO2  
  Abstract Understanding the drivers of yield levels under climate change is required to support adaptation planning and respond to changing production risks. This study uses an ensemble of crop models applied on a spatial grid to quantify the contributions of various climatic drivers to past yield variability in grain maize and winter wheat of European cropping systems (1984-2009) and drivers of climate change impacts to 2050. Results reveal that for the current genotypes and mix of irrigated and rainfed production, climate change would lead to yield losses for grain maize and gains for winter wheat. Across Europe, on average heat stress does not increase for either crop in rainfed systems, while drought stress intensifies for maize only. In low-yielding years, drought stress persists as the main driver of losses for both crops, with elevated CO2 offering no yield benefit in these years.  
  Address 2018-10-25  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5211  
Permanent link to this record
 

 
Author Asseng, S.; Ewert, F.; Martre, P.; Rötter, R.P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; Reynolds, M.P.; Alderman, P.D.; Prasad, P.V.V.; Aggarwal, P.K.; Anothai, J.; Basso, B.; Biernath, C.; Challinor, A.J.; De Sanctis, G.; Doltra, J.; Fereres, E.; Garcia-Vila, M.; Gayler, S.; Hoogenboom, G.; Hunt, L.A.; Izaurralde, R.C.; Jabloun, M.; Jones, C.D.; Kersebaum, K.C.; Koehler, A.-K.; Müller, C.; Naresh Kumar, S.; Nendel, C.; O’Leary, G.; Olesen, J.E.; Palosuo, T.; Priesack, E.; Eyshi Rezaei, E.; Ruane, A.C.; Semenov, M.A.; Shcherbak, I.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Thorburn, P.J.; Waha, K.; Wang, E.; Wallach, D.; Wolf, J.; Zhao, Z.; Zhu, Y. url  doi
openurl 
  Title Rising temperatures reduce global wheat production Type Journal Article
  Year 2014 Publication Nature Climate Change Abbreviated Journal (down) Nat. Clim. Change  
  Volume 5 Issue 2 Pages 143-147  
  Keywords climate-change; spring wheat; dryland wheat; yield; growth; drought; heat; CO2; agriculture; adaptation  
  Abstract Crop models are essential tools for assessing the threat of climate change to local and global food production1. Present models used to predict wheat grain yield are highly uncertain when simulating how crops respond to temperature2. Here we systematically tested 30 different wheat crop models of the Agricultural Model Intercomparison and Improvement Project against field experiments in which growing season mean temperatures ranged from 15 °C to 32 °C, including experiments with artificial heating. Many models simulated yields well, but were less accurate at higher temperatures. The model ensemble median was consistently more accurate in simulating the crop temperature response than any single model, regardless of the input information used. Extrapolating the model ensemble temperature response indicates that warming is already slowing yield gains at a majority of wheat-growing locations. Global wheat production is estimated to fall by 6% for each °C of further temperature increase and become more variable over space and time.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1758-678x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4550  
Permanent link to this record
 

 
Author Müller, C.; Elliott, J.; Levermann, A. url  doi
openurl 
  Title Food security: Fertilizing hidden hunger Type Journal Article
  Year 2014 Publication Nature Climate Change Abbreviated Journal (down) Nat. Clim. Change  
  Volume 4 Issue 7 Pages 540-541  
  Keywords elevated CO2; human-nutrition; climate-change; carbon; face  
  Abstract Atmospheric CO2 fertilization may go some way to compensating the negative impact of climatic changes on crop yields, but it comes at the expense of a deterioration of the current nutritional value of food.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1758-678x 1758-6798 ISBN Medium Editorial Material  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4537  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: