|   | 
Details
   web
Records
Author Mitter, H.; Schmid, E.; Sinabell, F.
Title Integrated modelling of protein crop production responses to climate change and agricultural policy scenarios in Austria Type Journal Article
Year 2015 Publication Climate Research Abbreviated Journal (up) Clim. Res.
Volume 65 Issue Pages 205-220
Keywords Climate change impact; Adaptation; Soybean; EPIC; Common Agricultural Policy; Land use
Abstract Climate and policy changes are likely to affect protein crop production and thus trade balances in Europe, which is highly dependent on imports. Exemplified for Austrian cropland, we developed an integrated modelling framework to analyze climate change and policy scenario impacts on protein crop production and environmental outcomes. The integrated modelling framework consists of a statistical climate change model, a crop rotation model, the bio-physical process model EPIC, and the economic bottom-up land use optimization model BiomAT. EPIC is applied to simulate annual dry matter crop yields for different crop management practices including crop rotations, fertilization intensities, and irrigation, as well as for 3 regional climate change scenarios until 2040 at a 1 km grid resolution. BiomAT maximizes total gross margins by optimizing land use choices and crop management practices subject to spatially explicit cropland endowments. The model results indicate that changes in agricultural policy conditions, cropland use, and higher flexibility in crop management practices may reduce protein import dependence under changing climatic conditions. Expanding protein crop production is most attractive in south-eastern Austria with its Central European continental climate where maize is most often replaced in crop rotations. However, the acreage of protein crops is limited by agronomically suitable cropland. An intended side effect is the reduction of nitrogen fertilizer inputs by about 0.1% if total protein crop production increases by 1%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0936-577x ISBN Medium
Area Expedition Conference
Notes TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5012
Permanent link to this record
 

 
Author Lardy, R.; Bellocchi, G.; Martin, R.
Title Vuln-Indices: Software to assess vulnerability to climate change Type Journal Article
Year 2015 Publication Computers and Electronics in Agriculture Abbreviated Journal (up) Computers and Electronics in Agriculture
Volume 114 Issue Pages 53-57
Keywords climate change; Java; vulnerability indices; pasture simulation-model; integrated assessment; environmental-change; change impacts; system
Abstract Vuln-Indices Java-based software was developed on concepts of vulnerability to climate change of agro-ecological systems. It implements the calculation of vulnerability indices on series of state variables for assessments at both site and region levels. The tool is useful because synthetic indices help capturing complex processes and prove effective to identify the factors responsible for vulnerability and their relative importance. It is suggested that the tool may be plausible for use with stakeholders to disseminate information of climate change impacts. (C) 2015 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1699 ISBN Medium Article
Area Expedition Conference
Notes LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4648
Permanent link to this record
 

 
Author Gutzler, C.; Helming, K.; Balla, D.; Dannowski, R.; Deumlich, D.; Glemnitz, M.; Knierim, A.; Mirschel, W.; Nendel, C.; Paul, C.; Sieber, S.; Stachow, U.; Starick, A.; Wieland, R.; Wurbs, A.; Zander, P.
Title Agricultural land use changes – a scenario-based sustainability impact assessment for Brandenburg, Germany Type Journal Article
Year 2015 Publication Ecological Indicators Abbreviated Journal (up) Ecological Indicators
Volume 48 Issue Pages 505-517
Keywords scenarios; impact assessment; agricultural intensification; land use change; irrigation; bioenergy; social and environmental indicators; climate-change; landscape; model
Abstract Decisions for agricultural management are taken at farm scale. However, such decisions may well impact upon regional sustainability. Two of the likely agricultural management responses to future challenges are extended use of irrigation and increased production of energy crops. The drivers for these are high commodity prices and subsidy policies for renewable energy. However, the impacts of these responses upon regional sustainability are unknown. Thus, we conducted integrated impact assessments for agricultural intensification scenarios in the federal state of Brandenburg, Germany, for 2025. One Irrigation scenario and one Energy scenario were contrasted with the Business As Usual (BAU) scenario. We applied nine indicators to analyze the economic, social and environmental effects at the regional, in this case district scale, which is the smallest administrative unit in Brandenburg. Assessment results were discussed in a stakeholder workshop involving 16 experts from the state government. The simulated area shares of silage maize for fodder and energy were 29%, 37% and 49% for the BAU, Irrigation, and Energy scenarios, respectively. The Energy scenario increased bio-electricity production to 41% of the demand of Brandenburg, and it resulted in CO2 savings of up to 3.5 million tons. However, it resulted in loss of biodiversity, loss of landscape scenery, increased soil erosion risk, and increased area demand for water protection requirements. The Irrigation scenario led to yield increases of 7% (rapeseed), 18% (wheat, sugar beet), and 40% (maize) compared to the BAU scenario. It also reduced the year-to-year yield variability. Water demand for irrigation was found to be in conflict with other water uses for two of the 14 districts. Spatial differentiation of scenario impacts showed that districts with medium to low yield potentials were more affected by negative impacts than districts with high yield potentials. In this first comprehensive sustainability impact assessment of agricultural intensification scenarios at regional level, we showed that a considerable potential for agricultural intensification exists. The intensification is accompanied by adverse environmental and socio-economic impacts. The novelty lies in the multiscale integration of comprehensive, agricultural management simulations with regional level impact assessment, which was achieved with the adequate use of indicators. It provided relevant evidence for policy decision making. Stakeholders appreciated the integrative approach of the assessment, which substantiated ongoing discussions among the government bodies. The assessment approach and the Brandenburg case study may stay exemplary for other regions in the world where similar economic and policy driving forces are likely to lead to agricultural intensification. (C) 2014 The Authors. Published by Elsevier Ltd.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1470-160x ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4561
Permanent link to this record
 

 
Author Eza, U.; Shtiliyanova, A.; Borras, D.; Bellocchi, G.; Carrère, P.; Martin, R.
Title An open platform to assess vulnerabilities to climate change: An application to agricultural systems Type Journal Article
Year 2015 Publication Ecological Informatics Abbreviated Journal (up) Ecological Informatics
Volume 30 Issue Pages 389-396
Keywords climate change; grasslands; modeling platform; vulnerability assessment; pasture simulation-model; software component; solar-radiation; crop production; change impacts; adaptation; indicator; makers
Abstract Numerous climate futures are now available from global climate models. Translation of climate data such as precipitation and temperatures into ecologically meaningful outputs for managers and planners is the next frontier. We describe a model-based open platform to assess vulnerabilities of agricultural systems to climate change on pixel-wise data. The platform includes a simulation modeling engine and is suited to work with NetCDF format of input and output files. In a case study covering a region (Auvergne) in the Massif Central of France, the platform is configured to characterize climate (occurrence of arid conditions in historical and projected climate records), soils and human management, and is then used to assess the vulnerability to climate change of grassland productivity (downscaled to a fine scale). We demonstrate how using climate time series, and process-based simulations vulnerabilities can be defined at fine spatial scales relevant to farmers and land managers, and can be incorporated into management frameworks. (C) 2015 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1574-9541 ISBN Medium Article
Area Expedition Conference
Notes CropM LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4708
Permanent link to this record
 

 
Author Ben Touhami, H.; Bellocchi, G.
Title Bayesian calibration of the Pasture Simulation model (PaSim) to simulate European grasslands under water stress Type Journal Article
Year 2015 Publication Ecological Informatics Abbreviated Journal (up) Ecological Informatics
Volume 30 Issue Pages 356-364
Keywords Bayesian calibration framework; Grasslands; Pasture Simulation model; (PaSim); integrated assessment models; chain monte-carlo; climate-change; computation; impacts; vulnerability; likelihoods; france
Abstract As modeling becomes a more widespread practice in the agro-environmental sciences, scientists need reliable tools to calibrate models against ever more complex and detailed data. We present a generic Bayesian computation framework for grassland simulation, which enables parameter estimation in the Bayesian formalism by using Monte Carlo approaches. We outline the underlying rationale, discuss the computational issues, and provide results from an application of the Pasture Simulation model (PaSim) to three European grasslands. The framework was suited to investigate the challenging problem of calibrating complex biophysical models to data from altered scenarios generated by precipitation reduction (water stress conditions). It was used to infer the parameters of manipulated grassland systems and to assess the gain in uncertainty reduction by updating parameter distributions using measurements of the output variables.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1574-9541 ISBN Medium Article
Area Expedition Conference
Notes CropM, LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4697
Permanent link to this record