|   | 
Details
   web
Records
Author Luo, K.; Tao, F.; Deng, X.; Moiwo, J.P.
Title Changes in potential evapotranspiration and surface runoff in 1981-2010 and the driving factors in Upper Heihe River Basin in Northwest China Type Journal Article
Year 2017 Publication Hydrological Processes Abbreviated Journal (up) Hydrol. Process.
Volume 31 Issue 1 Pages 90-103
Keywords driving factor; potential evaporation; surface runoff; SWAT model; Upper Heihe River Basin; SWAT Hydrologic Model; Pan Evaporation; Vegetation Model; Climate-Change; Water; Trends; Precipitation; Uncertainty; Variability; Generation
Abstract Changes in potential evapotranspiration and surface runoff can have profound implications for hydrological processes in arid and semiarid regions. In this study, we investigated the response of hydrological processes to climate change in Upper Heihe River Basin in Northwest China for the period from 1981 to 2010. We used agronomic, climatic and hydrological data to drive the Soil and Water Assessment Tool model for changes in potential evapotranspiration (ET0) and surface runoff and the driving factors in the study area. The results showed that increasing autumn temperature increased snow melt, resulting in increased surface runoff, especially in September and October. The spatial distribution of annual runoff was different from that of seasonal runoff, with the highest runoff in Yeniugou River, followed by Babaohe River and then the tributaries in the northern of the basin. There was no evaporation paradox at annual and seasonal time scales, and annual ET0 was driven mainly by wind speed. ET0 was driven by relative humidity in spring, sunshine hour duration in autumn and both sunshine hour duration and relative humility in summer. Surface runoff was controlled by temperature in spring and winter and by precipitation in summer (flood season). Although surface runoff increased in autumn with increasing temperature, it depended on rainfall in September and on temperature in October and November. Copyright (C) 2016 John Wiley & Sons, Ltd.
Address 2018-08-23
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0885-6087 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5207
Permanent link to this record
 

 
Author Murat, M.; Malinowska, I.; Gos, M.; Krzyszczak, J.
Title Forecasting daily meteorological time series using ARIMA and regression models Type Journal Article
Year 2018 Publication International Agrophysics Abbreviated Journal (up) Int. Agrophys.
Volume 32 Issue 2 Pages 253-264
Keywords regression models; forecast; time series; meteorological quantities; Response Surfaces; Extreme Heat; Wheat; Climate
Abstract The daily air temperature and precipitation time series recorded between January 1, 1980 and December 31, 2010 in four European sites (Jokioinen, Dikopshof, Lleida and Lublin) from different climatic zones were modeled and forecasted. In our forecasting we used the methods of the Box-Jenkins and Holt-Winters seasonal auto regressive integrated moving-average, the autoregressive integrated moving-average with external regressors in the form of Fourier terms and the time series regression, including trend and seasonality components methodology with R software. It was demonstrated that obtained models are able to capture the dynamics of the time series data and to produce sensible forecasts.
Address 2018-06-14
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0236-8722 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5202
Permanent link to this record
 

 
Author Murat, M.; Malinowska, I.; Hoffmann, H.; Baranowski, P.
Title Statistical modelling of agrometeorological time series by exponential smoothing Type Journal Article
Year 2016 Publication International Agrophysics Abbreviated Journal (up) International Agrophysics
Volume 30 Issue 1 Pages 57-65
Keywords exponential smoothing; meteorological time series; statistical forecasting; daily temperature records; weighted moving averages; climate-change; prediction; forecasts; state; weather
Abstract Meteorological time series are used in modelling agrophysical processes of the soil-plant-atmosphere system which determine plant growth and yield. Additionally, longterm meteorological series are used in climate change scenarios. Such studies often require forecasting or projection of meteorological variables, eg the projection of occurrence of the extreme events. The aim of the article was to determine the most suitable exponential smoothing models to generate forecast using data on air temperature, wind speed, and precipitation time series in Jokioinen (Finland), Dikopshof (Germany), Lleida (Spain), and Lublin (Poland). These series exhibit regular additive seasonality or non-seasonality without any trend, which is confirmed by their autocorrelation functions and partial autocorrelation functions. The most suitable models were indicated by the smallest mean absolute error and the smallest root mean squared error.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0236-8722 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4728
Permanent link to this record
 

 
Author Xiao, D.P.; Tao, F.L.
Title Contributions of cultivar shift, management practice and climate change to maize yield in North China Plain in 1981-2009 Type Journal Article
Year 2016 Publication International Journal of Biometeorology Abbreviated Journal (up) International Journal of Biometeorology
Volume 60 Issue 7 Pages 1111-1122
Keywords Adaptation; Agronomic practice; Maize yield; Negative impact; Climate; change; model; variability; performance; simulation; province; apsim; gaps
Abstract The impact of climate change on crop yield is compounded by cultivar shifts and agronomic management practices. To determine the relative contributions of climate change, cultivar shift, and management practice to changes in maize (Zea mays L.) yield in the past three decades, detailed field data for 1981-2009 from four representative experimental stations in North China Plain (NCP) were analyzed via model simulation. The four representative experimental stations are geographically and climatologically different, represent the typical cropping system in the study area, and have more complete weather/crop records for the period of 1981-2009. The results showed that while the shift from traditional to modern cultivar increased yield by 23.9-40.3 %, new fertilizer management increased yield by 3.3-8.6 %. However, the trends in climate variables for 1981-2009 reduced maize yield by 15-30 % in the study area. Among the main climate variables, solar radiation had the largest effect on maize yield, followed by temperature and then precipitation. While a significant decline in solar radiation in 1981-2009 (maybe due to air pollution) reduced yield by 12-24 %, a significant increase in temperature reduced yield by 3-9 %. In contrast, a non-significant increase in precipitation during the maize growth period increased yield by 0.9-3 % at three of the four investigated stations. However, a decline in precipitation reduced yield by 3 % in the remaining station. The study revealed that although the shift from traditional to modern cultivars and agronomic management practices contributed most to the increase in maize yield, the negative impact of climate change was large enough to offset 46-67 % of the trend in the observed yields in the past three decades in NCP. The reduction in solar radiation, especially in the most critical period of maize growth, limited the process of photosynthesis and thereby further reduced maize yield.
Address 2016-09-13
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-7128 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4779
Permanent link to this record
 

 
Author Ventrella, D.; Charfeddine, M.; Giglio, L.; Castellini, M.
Title Application of DSSAT models for an agronomic adaptation strategy under climate change in Southern of Italy: optimum sowing and transplanting time for winter durum wheat and tomato Type Journal Article
Year 2012 Publication Italian Journal of Agronomy Abbreviated Journal (up) Ital. J. Agron.
Volume 7 Issue 1 Pages 16
Keywords DSSAT model; climate change; winter durum wheat; tomato; sowing time; transplanting time
Abstract Many climate change studies have been carried out in different parts of the world to assess climate change vulnerability and adaptation capacity of agricultural crops for certain environments characterized from climatic, pedological and agronomical point of view. The objective of this study was to analyse the productive response of winter durum wheat and tomato to climate change and sowing/transplanting time in one of the most productive areas of Italy (i.e. Capitanata, Puglia), using CERES-Wheat and CROPGRO cropping system models. Three climatic datasets were used: i) a single dataset (50 km x 50 km) provided by the JRC European centre for the period 1975- 2005; two datasets from HadCM3 for the IPCC A2 GHG scenario for time slices with +2°C (centred over 2030-2060) and +5°C (centred over 2070-2099), respectively. All three datasets were used to generate synthetic climate series using a weather simulator (model LARS-WG). No negative yield effects of climate change were observed for winter durum wheat with delayed sowing (from 330 to 345 DOY) increasing the average dry matter grain yield under forecasted scenarios. Instead, the warmer temperatures were primarily shown to accelerate the phenology, resulting in decreased yield for tomato under the + 5°C future climate scenario. In general, under global temperature increase by 5°C, early transplanting times could minimize the negative impact of climate change on crop productivity but the intensity of this effect was not sufficient to restore the current production levels of tomato cultivated in southern Italy.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2039-6805 1125-4718 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4821
Permanent link to this record