toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Persson, T.; Kværnø, S.; Höglind, M. url  doi
openurl 
  Title Impact of soil type extrapolation on timothy grass yield under baseline and future climate conditions in southeastern Norway Type Journal Article
  Year 2015 Publication Climate Research Abbreviated Journal (down) Clim. Res.  
  Volume 65 Issue Pages 71-86  
  Keywords climate change scenarios; crop modelling; forage grass; lingra; soil properties; spatial variability; phleum pretense; poaceae; simulation-model; nutritive-value; systems simulation; catimo model; crop models; growth; nitrogen; scale; productivity; regrowth  
  Abstract Interactions between soil properties and climate affect forage grass productivity. Dynamic models, simulating crop performance as a function of environmental conditions, are valid for a specific location with given soil and weather conditions. Extrapolations of local soil properties to larger regions can help assess the requirement for soil input in regional yield estimations. Using the LINGRA model, we simulated the regional yield level and variability of timothy, a forage grass, in Akershus and Ostfold counties, Norway. Soils were grouped according to physical similarities according to 4 sets of criteria. This resulted in 66, 15, 5 and 1 groups of soils. The properties of the soil with the largest area was extrapolated to the other soils within each group and input to the simulations. All analyses were conducted for 100 yr of generated weather representing the period 1961-1990, and climate projections for the period 2046-2065, the Intergovernmental Panel on Climate Change greenhouse gas emission scenario A1B, and 4 global climate models. The simulated regional seasonal timothy yields were 5-13% lower on average and had higher inter-annual variability for the least detailed soil extrapolation than for the other soil extrapolations, across climates. There were up to 20% spatial intra-regional differences in simulated yield between soil extrapolations. The results indicate that, for conditions similar to these studied here, a few representative profiles are sufficient for simulations of average regional seasonal timothy yield. More spatially detailed yield analyses would benefit from more detailed soil input.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0936-577x 1616-1572 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4674  
Permanent link to this record
 

 
Author Park, S.K.; Sungmin, O.; Cassardo, C. doi  openurl
  Title Soil temperature response in Korea to a changing climate using a land surface model Type Journal Article
  Year 2017 Publication Asia-Pacific Journal of Atmospheric Sciences Abbreviated Journal (down) Asia-Pacific Journal of Atmospheric Sciences  
  Volume 53 Issue 4 Pages 457-470  
  Keywords Land surface process; soil temperature; climate change; soil-vegetation-atmosphere transfer (SVAT) scheme; University of TOrino model of land Process Interaction with Atmosphere (UTOPIA); REGIONAL CLIMATE; SNOW COVER; WATER-RESOURCES; SOCIOECONOMIC SCENARIOS; QUANTITATIVE-ANALYSIS; MESOSCALE MODEL; SRES EMISSIONS; FUTURE CLIMATE; CHANGE IMPACTS; SOUTH-AMERICA  
  Abstract The land surface processes play an important role in weather and climate systems through its regulation of radiation, heat, water and momentum fluxes. Soil temperature (ST) is one of the most important parameters in the land surface processes; however, there are few extensive measurements of ST with a long time series in the world. According to the CLImatology of Parameters at the Surface (CLIPS) methodology, the output of a trusted Soil-Vegetation- Atmosphere Transfer (SVAT) scheme can be utilized instead of observations to investigate the regional climate of interest. In this study, ST in South Korea is estimated in a view of future climate using the output from a trusted SVAT scheme – the University of TOrino model of land Process Interaction with Atmosphere (UTOPIA), which is driven by a regional climate model. Here characteristic changes in ST are analyzed under the IPCC A2 future climate for 2046-2055 and 2091-2100, and are compared with those under the reference climate for 1996-2005. The UTOPIA results were validated using the observed ST in the reference climate, and the model proved to produce reasonable ST in South Korea. The UTOPIA simulations indicate that ST increases due to environmental change, especially in air temperature (AT), in the future climate. The increment of ST is proportional to that of AT except for winter. In wintertime, the ST variations are different from region to region mainly due to variations in snow cover, which keeps ST from significant changes by the climate change.  
  Address 2017-12-21  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1976-7633 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5182  
Permanent link to this record
 

 
Author Hutchings, N.J.; Özkan Gülzari, Ş.; de Haan, M.; Sandars, D. doi  openurl
  Title How do farm models compare when estimating greenhouse gas emissions from dairy cattle production Type Journal Article
  Year 2018 Publication Animal Abbreviated Journal (down) Animal  
  Volume 12 Issue 10 Pages 2171-2180  
  Keywords dairy cattle; farm-scale; model; greenhouse gas; Future Climate Scenarios; Systems-Analysis; Milk-Production; Crop; Production; Mitigation; Intensity; Impacts  
  Abstract The European Union Effort Sharing Regulation (ESR) will require a 30% reduction in greenhouse gas (GHG) emissions by 2030 compared with 2005 from the sectors not included in the European Emissions Trading Scheme, including agriculture. This will require the estimation of current and future emissions from agriculture, including dairy cattle production systems. Using a farm-scale model as part of a Tier 3 method for farm to national scales provides a more holistic and informative approach than IPCC (2006) Tier 2 but requires independent quality control. Comparing the results of using models to simulate a range of scenarios that explore an appropriate range of biophysical and management situations can support this process by providing a framework for placing model results in context. To assess the variation between models and the process of understanding differences, estimates of GHG emissions from four farm-scale models (DailyWise, FarmAC, HolosNor and SFARMMOD) were calculated for eight dairy farming scenarios within a factorial design consisting of two climates (cool/dry and warm/wet) x two soil types (sandy and clayey) x two feeding systems (grass only and grass/maize). The milk yield per cow, follower cow ratio, manure management system, nitrogen (N) fertilisation and land area were standardised for all scenarios in order to associate the differences in the results with the model structure and function. Potential yield and application of available N in fertiliser and manure were specified separately for grass and maize. Significant differences between models were found in GHG emissions at the farm-scale and for most contributory sources, although there was no difference in the ranking of source magnitudes. The farm-scale GHG emissions, averaged over the four models, was 10.6 t carbon dioxide equivalents (CO(2)e)/ha per year, with a range of 1.9 t CO(2)e/ha per year. Even though key production characteristics were specified in the scenarios, there were still significant differences between models in the annual milk production per ha and the amounts of N fertiliser and concentrate feed imported. This was because the models differed in their description of biophysical responses and feedback mechanisms, and in the extent to which management functions were internalised. We conclude that comparing the results of different farm-scale models when applied to a range of scenarios would build confidence in their use in achieving ESR targets, justifying further investment in the development of a wider range of scenarios and software tools.  
  Address 2019-01-07  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1751-7311 ISBN Medium  
  Area Expedition Conference  
  Notes TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5212  
Permanent link to this record
 

 
Author Balkovič, J.; van der Velde, M.; Schmid, E.; Skalský, R.; Khabarov, N.; Obersteiner, M.; Stürmer, B.; Xiong, W. url  doi
openurl 
  Title Pan-European crop modelling with EPIC: Implementation, up-scaling and regional crop yield validation Type Journal Article
  Year 2013 Publication Agricultural Systems Abbreviated Journal (down) Agricultural Systems  
  Volume 120 Issue Pages 61-75  
  Keywords EPIC; large-scale crop modelling; model performance testing; EU; climate-change; high-resolution; organic-carbon; growth-model; wheat yield; water; calibration; impacts; productivity; simulations  
  Abstract Justifiable usage of large-scale crop model simulations requires transparent, comprehensive and spatially extensive evaluations of their performance and associated accuracy. Simulated crop yields of a Pan-European implementation of the Environmental Policy Integrated Climate (EPIC) crop model were satisfactorily evaluated with reported regional yield data from EUROSTAT for four major crops, including winter wheat, rainfed and irrigated maize, spring barley and winter rye. European-wide land use, elevation, soil and daily meteorological gridded data were integrated in GIS and coupled with EPIC. Default EPIC crop and biophysical process parameter values were used with some minor adjustments according to suggestions from scientific literature. The model performance was improved by spatial calculations of crop sowing densities, potential heat units, operation schedules, and nutrient application rates. EPIC performed reasonable in the simulation of regional crop yields, with long-term averages predicted better than inter-annual variability: linear regression R-2 ranged from 0.58 (maize) to 0.91 (spring barley) and relative estimation errors were between +/- 30% for most of the European regions. The modelled and reported crop yields demonstrated similar responses to driving meteorological variables. However, EPIC performed better in dry compared to wet years. A yield sensitivity analysis of crop nutrient and irrigation management factors and cultivar specific characteristics for contrasting regions in Europe revealed a range in model response and attainable yields. We also show that modelled crop yield is strongly dependent on the chosen PET method. The simulated crop yield variability was lower compared to reported crop yields. This assessment should contribute to the availability of harmonised and transparently evaluated agricultural modelling tools in the EU as well as the establishment of modelling benchmarks as a requirement for sound and ongoing policy evaluations in the agricultural and environmental domains. (C) 2013 The Authors. Published by Elsevier Ltd. All rights reserved.  
  Address 2016-06-01  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-521x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4737  
Permanent link to this record
 

 
Author Bojar, W.; Knopik, L.; Żarski, J.; Kuśmierek-Tomaszewska, R. url  openurl
  Title Integrated assessment of crop productivity based on the food supply forecasting Type Journal Article
  Year 2016 Publication Agricultural Economics – Czech Abbreviated Journal (down) Agricultural Economics – Czech  
  Volume 61 Issue 11 Pages 502-510  
  Keywords climate changes; decision-making tools; estimation of parameters; forecasted outputs; gamma distribution; predicting yields; climate-change; emissions scenarios; impacts; potato; yield; growth; policy; scale; water  
  Abstract Climate change scenarios suggest that long periods without rainfall will occur in the future often causing instability of the agricultural products market. The aim of our research was to build a model describing the amount of precipitation and droughts for forecasting crop yields in the future. In this study, we analysed a non-standard mixture of gamma and one point distributions as the model of rainfall. On the basis of the rainfall data, one can estimate parameters of the distribution. Parameter estimators were constructed using a method of maximum likelihood. The obtained rainfall data allow confirming the hypothesis of the adequacy of the proposed rainfall models. Long series of droughts allow one to determine the probabilities of adverse phenomena in agriculture. Based on the model, yields of barley in the years 2030 and 2050 were forecasted which can be used for the assessment of other crops productivity. The results obtained with this approach can be used to predict decreases in agricultural production caused by prospective rainfall shortages. This will enable decision makers to shape effective agricultural policies in order to learn how to balance the food supplies and demands through an appropriate management of stored raw food materials and import/export policies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0139-570x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4644  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: