toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hlavinka, P.; Trnka, M.; Kersebaum, K.C.; Cermák, P.; Pohanková, E.; Orság, M.; Pokorný, E.; Fischer, M.; Brtnický, M.; Žalud, Z. doi  openurl
  Title Modelling of yields and soil nitrogen dynamics for crop rotations by HERMES under different climate and soil conditions in the Czech Republic Type Journal Article
  Year 2014 Publication Journal of Agricultural Science Abbreviated Journal (up) J. Agric. Sci.  
  Volume 152 Issue 02 Pages 188-204  
  Keywords winter oilseed rape; spring barley; central-europe; growth; simulation; wheat; adaptation; impact; water; agriculture  
  Abstract The crop growth model HERMES was used to model crop rotation cycles at 12 experimental sites in the Czech Republic. A wide range of crops (spring and winter barley, winter wheat, maize, potatoes, sugar beet, winter rape, oats, alfalfa and grass), cultivated between 1981 and 2009 under various soil and climatic conditions, were included. The model was able to estimate the yields of field crop rotations at a reasonable level, with an index of agreement (IA) ranging from 0.82 to 0.96 for the calibration database (the median coefficient of determination (R-2) was 0.71), while IA for verification varied from 0.62 to 0.93 (median R-2 was 0.78). Grass yields were also estimated at a reasonable level of accuracy. The estimates were less accurate for the above-ground biomass at harvest (the medians for IA were 0.76 and 0.72 for calibration and verification, respectively, and analogous medians of R-2 were 0.50 and 0.49). The soil mineral nitrogen (N) content under the field crops was simulated with good precision, with the IA ranging from 0.49 to 0.74 for calibration and from 0.43 to 0.68 for verification. Generally, the soil mineral N was underestimated, and more accurate results were achieved at locations with intensive fertilization. Simulated yields, soil N, water and organic carbon (C) contents were compared with long-term field measurements at Ne. mc. ice, located within the fertile Moravian lowland. At this station, all of the observed parameters were reproduced with a reasonable level of accuracy. In the case of the organic C content, HERMES reproduced a decrease ranging from c. 85 to 77 tonnes (t)/ha (for the 0-0.3 m soil layer) between the years 1980 and 2007. In spite of its relatively simple approach and restricted input data, HERMES was proven to be robust across various conditions, which is a precondition for its future use for both theoretical and practical purposes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8596 1469-5146 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4626  
Permanent link to this record
 

 
Author Hakala, K.; Jauhiainen, L.; Himanen, S.J.; RÖTter, R.; Salo, T.; Kahiluoto, H. doi  openurl
  Title Sensitivity of barley varieties to weather in Finland Type Journal Article
  Year 2012 Publication Journal of Agricultural Science Abbreviated Journal (up) J. Agric. Sci.  
  Volume 150 Issue 02 Pages 145-160  
  Keywords climate-change; winter-wheat; spring wheat; reproductive growth; high-temperatures; changing climate; crop production; increased CO2; yield; tolerance  
  Abstract Global climate change is predicted to shift seasonal temperature and precipitation patterns. An increasing frequency of extreme weather events such as heat waves and prolonged droughts is predicted, but there are high levels of uncertainty about the nature of local changes. Crop adaptation will be important in reducing potential damage to agriculture. Crop diversity may enhance resilience to climate variability and changes that are difficult to predict. Therefore, there has to be sufficient diversity within the set of available cultivars in response to weather parameters critical for yield formation. To determine the scale of such ‘weather response diversity’ within barley (Hordeum vulgare L.), an important crop in northern conditions, the yield responses of a wide range of modern and historical varieties were analysed according to a well-defined set of critical agro-meteorological variables. The Finnish long-term dataset of MTT Official Variety Trials was used together with historical weather records of the Finnish Meteorological Institute. The foci of the analysis were firstly to describe the general response of barley to different weather conditions and secondly to reveal the diversity among varieties in the sensitivity to each weather variable. It was established that barley yields were frequently reduced by drought or excessive rain early in the season, by high temperatures at around heading, and by accelerated temperature sum accumulation rates during periods 2 weeks before heading and between heading and yellow ripeness. Low temperatures early in the season increased yields, but frost during the first 4 weeks after sowing had no effect. After canopy establishment, higher precipitation on average resulted in higher yields. In a cultivar-specific analysis, it was found that there were differences in responses to all but three of the studied climatic variables: waterlogging and drought early in the season and temperature sum accumulation rate before heading. The results suggest that low temperatures early in the season, delayed sowing, rain 3-7 weeks after sowing, a temperature change 3-4 weeks after sowing, a high temperature sum accumulation rate from heading to yellow ripeness and high temperatures (25 degrees C) at around heading could mostly be addressed by exploiting the traits found in the range of varieties included in the present study. However, new technology and novel genetic material are needed to enable crops to withstand periods of excessive rain or drought early in the season and to enhance performance under increased temperature sum accumulation rates prior to heading.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8596 1469-5146 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4586  
Permanent link to this record
 

 
Author Shrestha, S.; Abdalla, M.; Hennessy, T.; Forristal, D.; Jones, M.B. url  doi
openurl 
  Title Irish farms under climate change – is there a regional variation on farm responses? Type Journal Article
  Year 2015 Publication Journal of Agricultural Science Abbreviated Journal (up) J. Agric. Sci.  
  Volume 153 Issue 03 Pages 385-398  
  Keywords change impacts; elevated co2; potential impacts; maize production; united-states; winter-wheat; plant-growth; adaptation; ireland; yield  
  Abstract The current paper aims to determine regional impacts of climate change on Irish farms examining the variation in farm responses. A set of crop growth models were used to determine crop and grass yields under a baseline scenario and a future climate scenario. These crop and grass yields were used along with farm-level data taken from the Irish National Farm Survey in an optimizing farm-level (farm-level linear programming) model, which maximizes farm profits under limiting resources. A change in farm net margins under the climate change scenario compared to the baseline scenario was taken as a measure to determine the effect of climate change on farms. The growth models suggested a decrease in cereal crop yields (up to 9%) but substantial increase in yields of forage maize (up to 97%) and grass (up to 56%) in all regions. Farms in the border, midlands and south-east regions suffered, whereas farms in all other regions generally fared better under the climate change scenario used in the current study. The results suggest that there is a regional variability between farms in their responses to the climate change scenario. Although substituting concentrate feed with grass feeds is the main adaptation on all livestock farms, the extent of such substitution differs between farms in different regions. For example, large dairy farms in the south-east region adopted total substitution of concentrate feed while similar dairy farms in the south-west region opted to replace only 0.30 of concentrate feed. Farms in most of the regions benefitted from increasing stocking rate, except for sheep farms in the border and dairy farms in the south-east regions. The tillage farms in the mid-east region responded to the climate change scenario by shifting arable production to beef production on farms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8596 1469-5146 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, TradeM Approved no  
  Call Number MA @ admin @ Serial 4542  
Permanent link to this record
 

 
Author Semenov, M.A.; Stratonovitch, P.; Alghabari, F.; Gooding, M.J. doi  openurl
  Title Adapting wheat in Europe for climate change Type Journal Article
  Year 2014 Publication Journal of Cereal Science Abbreviated Journal (up) J. Ceareal Sci.  
  Volume 59 Issue 3 Pages 245-256  
  Keywords A, maximum area of flag leaf area; ABA, abscisic acid; CV, coefficient of variation; Crop improvement; Crop modelling; FC, field capacity; GMT, Greenwich mean time; GS, growth stage; Gf, grain filling duration; HI, harvest index; HSP, heat shock protein; Heat and drought tolerance; Impact assessment; LAI, leaf area index; Ph, phylochron; Pp, photoperiod response; Ru, root water uptake; S, duration of leaf senescence; SF, drought stress factor; Sirius; Wheat ideotype  
  Abstract Increasing cereal yield is needed to meet the projected increased demand for world food supply of about 70% by 2050. Sirius, a process-based model for wheat, was used to estimate yield potential for wheat ideotypes optimized for future climatic projections for ten wheat growing areas of Europe. It was predicted that the detrimental effect of drought stress on yield would be decreased due to enhanced tailoring of phenology to future weather patterns, and due to genetic improvements in the response of photosynthesis and green leaf duration to water shortage. Yield advances could be made through extending maturation and thereby improve resource capture and partitioning. However the model predicted an increase in frequency of heat stress at meiosis and anthesis. Controlled environment experiments quantify the effects of heat and drought at booting and flowering on grain numbers and potential grain size. A current adaptation of wheat to areas of Europe with hotter and drier summers is a quicker maturation which helps to escape from excessive stress, but results in lower yields. To increase yield potential and to respond to climate change, increased tolerance to heat and drought stress should remain priorities for the genetic improvement of wheat.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0733-5210 ISBN Medium Review  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4543  
Permanent link to this record
 

 
Author Carabano, M.J.; Logar, B.; Bormann, J.; Minet, J.; Vanrobays, M.L.; Diaz, C.; Tychon, B.; Gengler, N.; Hammami, H. doi  openurl
  Title Modeling heat stress under different environmental conditions Type Journal Article
  Year 2016 Publication Journal of Dairy Science Abbreviated Journal (up) J. Dairy Sci.  
  Volume 99 Issue 5 Pages 3798-3814  
  Keywords Holstein cattle; heat stress model; climate change; somatic-cell score; lactating dairy-cows; dry-matter intake; milk-production; temperate climate; production traits; holstein cows; cattle; yield; weather; Agriculture; Food Science & Technology  
  Abstract Renewed interest in heat stress effects on livestock productivity derives from climate change, which is expected to increase temperatures and the frequency of extreme weather events. This study aimed at evaluating the effect of temperature and humidity on milk production in highly selected dairy cattle populations across 3 European regions differing in climate and production systems to detect differences and similarities that can be used to optimize heat stress (HS) effect modeling. Milk, fat, and protein test day data from official milk recording for 1999 to 2010 in 4 Holstein populations located in the Walloon Region of Belgium (BEL), Luxembourg (LUX), Slovenia (SLO), and southern Spain (SPA) were merged with temperature and humidity data provided by the state meteorological agencies. After merging, the number of test day records/cows per trait ranged from 686,726/49,655 in SLO to 1,982,047/136,746 in BEL. Values for the daily average and maximum temperature-humidity index (THIavg and THImax) ranges for THIavg/THImax were largest in SLO (22-74/28-84) and shortest in SPA (39-76/46-83). Change point techniques were used to determine comfort thresholds, which differed across traits and climatic regions. Milk yield showed an inverted U-shaped pattern of response across the THI scale with a HS threshold around 73 THImax units. For fat and protein, thresholds were lower than for milk yield and were shifted around 6 THI units toward larger values in SPA compared with the other countries. Fat showed lower HS thresholds than protein traits in all countries. The traditional broken line model was compared with quadratic and cubic fits of the pattern of response in production to increasing heat loads. A cubic polynomial model allowing for individual variation in patterns of response and THIavg as heat load measure showed the best statistical features. Higher/lower producing animals showed less/more persistent production (quantity and quality) across the THI scale. The estimated correlations between comfort and THIavg values of 70 (which represents the upper end of the THIavg scale in BEL-LUX) were lower for BEL-LUX (0.70-0.80) than for SPA (0.83-0.85). Overall, animals producing in the more temperate climates and semi-extensive grazing systems of BEL and LUX showed HS at lower heat loads and more re-ranking across the THI scale than animals producing in the warmer climate and intensive indoor system of SPA.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0302 ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4745  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: