|
Pasqui, M., & Di Giuseppe, E. (2019). Climate change, future warming, and adaptation in Europe. Animal Frontiers, 9(1), 6–11.
Abstract: In recent decades, the increased temperatures reported in Europe and in the Mediterranean basin represent one of the clearest footprints of climate change along with increased frequency of heat waves. These climate modifications put the environment and human activities under strong pressure with a resulting need for designing new adaptation and mitigation strategies. The climate change challenge is unprecedented for humanity and is recognized as a priority topic for future research. Changes in the way we think and behave are critical challenges at the global and regional levels.
|
|
Yin, X., Kersebaum, K. - C., Beaudoin, N., Constantin, J., Chen, F., Louarn, G., et al. (2020). Uncertainties in simulating N uptake, net N mineralization, soil mineral N and N leaching in European crop rotations using process-based models. Field Crops Research, , 107863.
Abstract: Modelling N transformations within cropping systems is crucial for N management optimization in order to increase N use efficiency and reduce N losses. Such modelling remains challenging because of the complexity of N cycling in soil–plant systems. In the current study, the uncertainties of six widely used process-based models (PBMs), including APSIM, CROPSYST, DAISY, FASSET, HERMES and STICS, were tested in simulating different N managements (catch crops (CC) and different N fertilizer rates) in 12-year rotations in Western Europe. Winter wheat, sugar beet and pea were the main crops, and radish was the main CC in the tested systems. Our results showed that PBMs simulated yield, aboveground biomass, N export and N uptake well with low RMSE values, except for sugar beet, which was generally less well parameterized. Moreover, PBMs provided more accurate crop simulations (i.e. N export and N uptake) compared to simulations of soil (N mineralization and soil mineral N (SMN)) and environmental variables (N leaching). The use of multi-model ensemble mean or median of four PBMs significantly reduced the mean absolute percentage error (MAPE) between simulations and observations to less than 15% for yield, aboveground biomass, N export and N uptake. Multi-model ensemble also significantly reduced the MAPE for net N mineralization and annual N leaching to around 15%, while it was larger than 20% for SMN. Generally, PBMs well simulated the CC effects on N fluxes, i.e. increasing N mineralization and reducing N leaching in both short-term and long-term, and all PBMs correctly predicted the effects of the reduced N rate on all measured variables in the study. The uncertainties of multi-model ensemble for N mineralization, SMN and N leaching were larger, mainly because these variables are influenced by plant-soil interactions and subject to cumulative long-term effects in crop rotations, which makes them more difficult to simulate. Large differences existed between individual PBMs due to the differences in formalisms for describing N processes in soil–plant systems, the skills of modelers and the model calibration level. In addition, the model performance also depended on the simulated variables, for instance, HERMES and FASSET performed better for yield and crop biomass, APSIM, DAISY and STICS performed better for N export and N uptake, STICS provided best simulation for SMN and N leaching among the six individual PBMs in the study, but all PBMs met difficulties to well predict either average or variance of soil N mineralization. Our results showed that better calibration for soil N variables is needed to improve model predictions of N cycling in order to optimize N management in crop rotations.
|
|
Sanz-Cobena, A., Misselbrook, T. H., Hernaiz, P., & Vallejo, A. (2019). Impact of rainfall to the effectiveness of pig slurry shallow injection method for NH3 mitigation in a Mediterranean soil. Atm. Environ., 216, 116913.
Abstract: Ammonia emission from fertilized cropping systems is an important concern for stakeholders, particularly in regions with high livestock densities producing large amounts of manure. Application of pig slurries can result in very large losses of N through NH3 volatilization, thus decreasing the N use efficiency (NUE) of the applied manure. Shallow incorporation has been shown to significantly abate these losses. In this field study, we assessed the impact of contrasting weather conditions on the effectiveness of shallow injection to abate NH3 emissions from pig slurry application to a Mediterranean soil. As potential trade-offs of NH3 abatement, greenhouse gas emissions were also measured under conditions of high soil moisture. Compared with surface application of slurry, shallow injection effectively and significantly decreased NH3 losses independently of weather conditions, but reductions of NH3 emission were greater after heavy rainfall. In contrast, under these conditions, shallow injection triggered higher emissions of N2O and CH4. Our findings reinforce the idea that any single-pollutant abatement strategy needs to be designed and assessed in a regional context and considering potential trade-offs in the form of other pollutants.
|
|
Gomara, I., Bellocchi, G., Martin, R., Rodriguez-Fonseca, B., & Ruiz-Ramos, M. (2020). Influence of climate variability on the potential forage production of a mown permanent grassland in the French Massif Central. Agricultural and Forest Meteorology, 280, 107768.
Abstract: Climate Services (CS) provide support to decision makers across socio-economic sectors. In the agricultural sector, one of the most important CS applications is to provide timely and accurate yield forecasts based on climate prediction. In this study, the Pasture Simulation model (PaSim) was used to simulate, for the period 1959–2015, the forage production of a mown grassland system (Laqueuille, Massif Central of France) under different management conditions, with meteorological inputs extracted from the SAFRAN atmospheric database. The aim was to generate purely climate-dependent timeseries of optimal forage production, a variable that was maximized by brighter and warmer weather conditions at the grassland. A long-term increase was observed in simulated forage yield, with the 1995–2015 average being 29% higher than the 1959–1979 average. Such increase seems consistent with observed rising trends in temperature and CO2, and multi-decadal changes in incident solar radiation. At interannual timescales, sea surface temperature anomalies of the Mediterranean (MED), Tropical North Atlantic (TNA), equatorial Pacific (El Niño Southern Oscillation) and the North Atlantic Oscillation (NAO) index were found robustly correlated with annual forage yield values. Relying only on climatic predictors, we developed a stepwise statistical multi-regression model with leave-one-out cross-validation. Under specific management conditions (e.g., three annual cuts) and from one to five months in advance, the generated model successfully provided a p-value<0.01 in correlation (t-test), a root mean square error percentage (%RMSE) of 14.6% and a 71.43% hit rate predicting above/below average years in terms of forage yield collection. This is the first modeling study on the possible role of large-scale oceanic–atmospheric teleconnections in driving forage production in Europe. As such, it provides a useful springboard to implement a grassland seasonal forecasting system in this continent.
|
|
Tao, F., Palosuo, T., Roetter, R. P., Hernandez Diaz-Ambrona, C. G., Ines Minguez, M., Semenov, M. A., et al. (2020). Why do crop models diverge substantially in climate impact projections? A comprehensive analysis based on eight barley crop models. Agricultural and Forest Meteorology, 281, 107851.
Abstract: Robust projections of climate impact on crop growth and productivity by crop models are key to designing effective adaptations to cope with future climate risk. However, current crop models diverge strongly in their climate impact projections. Previous studies tried to compare or improve crop models regarding the impact of one single climate variable. However, this approach is insufficient, considering that crop growth and yield are affected by the interactive impacts of multiple climate change factors and multiple interrelated biophysical processes. Here, a new comprehensive analysis was conducted to look holistically at the reasons why crop models diverge substantially in climate impact projections and to investigate which biophysical processes and knowledge gaps are key factors affecting this uncertainty and should be given the highest priorities for improvement. First, eight barley models and eight climate projections for the 2050s were applied to investigate the uncertainty from crop model structure in climate impact projections for barley growth and yield at two sites: Jokioinen, Finland (Boreal) and Lleida, Spain (Mediterranean). Sensitivity analyses were then conducted on the responses of major crop processes to major climatic variables including temperature, precipitation, irradiation, and CO2, as well as their interactions, for each of the eight crop models. The results showed that the temperature and CO2 relationships in the models were the major sources of the large discrepancies among the models in climate impact projections. In particular, the impacts of increases in temperature and CO2 on leaf area development were identified as the major causes for the large uncertainty in simulating changes in evapotranspiration, above-ground biomass, and grain yield. Our findings highlight that advancements in understanding the basic processes and thresholds by which climate warming and CO2 increases will affect leaf area development, crop evapotranspiration, photosynthesis, and grain formation in contrasting environments are needed for modeling their impacts.
|
|
|