Doro, L., Jones, C., Williams, J. R., Norfleet, M. L., Izaurralde, R. C., Wang, X., et al. (2017). The Variable Saturation Hydraulic Conductivity Method for Improving Soil Water Content Simulation in EPIC and APEX Models. Vadose Zone Journal, 16(13).
Abstract: Soil water percolation is a key process in the life cycle of water in fields, watersheds, and river basins. The Environmental Policy Integrated Climate (EPIC) and the Agricultural Policy/Environmental eXtender (APEX) are continuous models developed for evaluating the environmental effects of agricultural management. Traditionally, these models have simulated soil water percolation processes using a tipping-bucket approach, with the rate of flow limited by the saturated hydraulic conductivity. This simple approach often leads to inaccuracy in simulating elevated soil water conditions where soil water content (SWC) levels may remain above field capacity under prolonged wet weather periods or limited drainage. To overcome this deficiency, a new sub-model, the variable saturation hydraulic conductivity (VSHC) method, was developed for simulating soil water percolation processes using a nonlinear equation to estimate the effective hydraulic conductivity as a function of the SWC and soil properties. The VSHC method was evaluated at three sites in the United States and two sites in Europe. In addition, a numerical solution of the Richards equation was used as a benchmark for SWC comparison. Results show that the VSHC method substantially improves the accuracy of the SWC simulation in long-term simulations, particularly during wet periods. At the watershed scale, results on the Riesel Y2 watershed indicate that the VSHC method enhances model performance in the high-flow regime of channel peak flows because of the improved estimation of SWC, which implies that the improved SWC simulation at the field scale is beneficial to hydrologic modeling at the watershed scale.
|
|
Zhai, R., & Tao, F. (2017). Contributions of climate change and human activities to runoff change in seven typical catchments across China. Sci. Tot. Environ., 605, 219–229.
Abstract: Climate change and human activities are two major factors affecting water resource change. It is important to understand the roles of the major factors in affecting runoff change in different basins for watershed management. Here, we investigated the trends in climate and runoff in seven typical catchments in seven basins across China from 1961 to 2014. Then we attributed the runoff change to climate change and human activities in each catchment and in three time periods (1980s, 1990s and 2000s), using the VIC model and long-term runoff observation data. During 1961-2014, temperature increased significantly, while the trends in precipitation were insignificant in most of the catchments and inconsistent among the catchments. The runoff in most of the catchments showed a decreasing trend except the Yingluoxia catchment in the northwestern China. The contributions of climate change and human activities to runoff change varied in different catchments and time periods. In the 1980s, climate change contributed more to runoff change than human activities, which was 84%, 59%,-66%,-50%, 59%, 94%, and -59% in the Nianzishan, Yingluoxia, Xiahui, Yangjiaping, Sanjiangkou, Xixian, and Changle catchment, respectively. After that, human activities had played a more essential role in runoff change. In the 1990s and 2000s, human activities contributed more to runoff change than in the 1980s. The contribution by human activities accounted for 84%,- 68%, and 67% in the Yingluoxia, Xiahui, and Sanjiangkou catchment, respectively, in the 1990s; and -96%,-67%,-94%, and -142% in the Nianzishan, Yangjiaping, Xixian, and Changle catchment, respectively, in the 2000s. It is also noted that after 2000 human activities caused decrease in runoff in all catchments except the Yingluoxia. Our findings highlight that the effects of human activities, such as increase in water withdrawal, land use/cover change, operation of dams and reservoirs, should be well managed. (C) 2017 Elsevier B.V. All rights reserved.
|
|
Schauberger, B., Rolinski, S., & Müller, C. (2016). A network-based approach for semi-quantitative knowledge mining and its application to yield variability. Environ. Res. Lett., 11(12), 123001.
Abstract: Variability of crop yields is detrimental for food security. Under climate change its amplitude is likely to increase, thus it is essential to understand the underlying causes and mechanisms. Crop models are the primary tool to project future changes in crop yields under climate change. Asystematic overview of drivers and mechanisms of crop yield variability (YV) can thus inform crop model development and facilitate improved understanding of climate change impacts on crop yields. Yet there is a vast body of literature on crop physiology and YV, which makes a prioritization of mechanisms for implementation in models challenging. Therefore this paper takes on a novel approach to systematically mine and organize existing knowledge from the literature. The aim is to identify important mechanisms lacking in models, which can help to set priorities in model improvement. We structure knowledge from the literature in a semi-quantitative network. This network consists of complex interactions between growing conditions, plant physiology and crop yield. We utilize the resulting network structure to assign relative importance to causes of YV and related plant physiological processes. As expected, our findings confirm existing knowledge, in particular on the dominant role of temperature and precipitation, but also highlight other important drivers of YV. More importantly, our method allows for identifying the relevant physiological processes that transmit variability in growing conditions to variability in yield. We can identify explicit targets for the improvement of crop models. The network can additionally guide model development by outlining complex interactions between processes and by easily retrieving quantitative information for each of the 350 interactions. We show the validity of our network method as a structured, consistent and scalable dictionary of literature. The method can easily be applied to many other research fields.
|
|
Murat, M., Malinowska, I., Hoffmann, H., & Baranowski, P. (2016). Statistical modelling of agrometeorological time series by exponential smoothing. International Agrophysics, 30(1), 57–65.
Abstract: Meteorological time series are used in modelling agrophysical processes of the soil-plant-atmosphere system which determine plant growth and yield. Additionally, longterm meteorological series are used in climate change scenarios. Such studies often require forecasting or projection of meteorological variables, eg the projection of occurrence of the extreme events. The aim of the article was to determine the most suitable exponential smoothing models to generate forecast using data on air temperature, wind speed, and precipitation time series in Jokioinen (Finland), Dikopshof (Germany), Lleida (Spain), and Lublin (Poland). These series exhibit regular additive seasonality or non-seasonality without any trend, which is confirmed by their autocorrelation functions and partial autocorrelation functions. The most suitable models were indicated by the smallest mean absolute error and the smallest root mean squared error.
|
|
Mansouri, M., & Destain, M. - F. (2015). Predicting biomass and grain protein content using Bayesian methods. Stoch. Environ. Res. Risk Assess., 29(4), 1167–1177.
Abstract: This paper deals with the problem of predicting biomass and grain protein content using improved particle filtering (IPF) based on minimizing the Kullback-Leibler divergence. The performances of IPF are compared with those of the conventional particle filtering (PF) in two comparative studies. In the first one, we apply IPF and PF at a simple dynamic crop model with the aim to predict a single state variable, namely the winter wheat biomass, and to estimate several model parameters. In the second study, the proposed IPF and the PF are applied to a complex crop model (AZODYN) to predict a winter-wheat quality criterion, namely the grain protein content. The results of both comparative studies reveal that the IPF method provides a better estimation accuracy than the PF method. The benefit of the IPF method lies in its ability to provide accuracy related advantages over the PF method since, unlike the PF which depends on the choice of the sampling distribution used to estimate the posterior distribution, the IPF yields an optimum choice of this sampling distribution, which also utilizes the observed data. The performance of the proposed method is evaluated in terms of estimation accuracy, root mean square error, mean absolute error and execution times.
|
|